Ichthyological Research

, Volume 53, Issue 2, pp 148–159 | Cite as

Molecular phylogenetic analyses of snakeheads (Perciformes: Channidae) using mitochondrial DNA sequences

  • Xia Li
  • Prachya Musikasinthorn
  • Yoshinori Kumazawa
Full paper


Mitochondrial DNA sequences of approximately 1.5 kbp including the NADH dehydrogenase subunit 2 (ND2) gene and its flanking gene regions were determined for 20 species from the freshwater fish family Channidae and 3 species from Nandidae, Badidae, and Osphronemidae. Channa orientalis and C. gachua had an approximately 170-bp insertion between the tRNAMet and ND2 genes, where a 5′-half of the insertion was similar to the 5′-end portion of the ND2 gene and a 3′-half was homologous to the tRNAMet gene. This insertion may thus have originated from a tandem gene duplication that occurred in a common ancestor of these two sister species. Molecular phylogenetic analyses from different tree-building methods consistently suggested the mutual monophyly of the African and Asian taxa and the existence of several clades within the Asian taxa, some of which correspond to distinct morphological features. Our molecular phylogeny clearly supported multiple independent losses of pelvic fins on Asian lineages in parallel. Divergence time estimation based on some reasonable assumptions without assuming the molecular clock suggested the early Cretaceous divergence of the African and Asian channids. The results thus support an ancient vicariant divergence of the African and Asian channids, rather than the more recent dispersal between African and Eurasian continents.

Key words

Channidae Snakeheads Gene organization Divergence time Molecular phylogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banarescu, P 1995Zoogeography of fresh waters, vol 3AULA-VerlagWiesbadenGoogle Scholar
  2. Banerjee, SK, Misra, KK, Banerjee, S, Ray-Chaudhuri, SP 1988Chromosome numbers, genome sizes, cell volumes and evolution of snakehead fish (family Channidae)J Fish Biol33781789CrossRefGoogle Scholar
  3. Benton, MJ 1993The fossil record, 2Chapman & HallLondonGoogle Scholar
  4. Berra, TM 2001Freshwater fish distributionAcademic PressSan DiegoGoogle Scholar
  5. Böhme, M 2004Migration history of air-breathing fishes reveals Neogene atmospheric circulation patternsGeology32393396CrossRefGoogle Scholar
  6. Bonou, CA, Teugels, GG 1985Révision systématique du genre Parachanna Teugels et Daget, 1984 (Pisces: Channidae)Rev Hydrobiol Trop18267280Google Scholar
  7. Boore, JL 1999Animal mitochondrial genomesNucleic Acids Res2717671780PubMedCrossRefGoogle Scholar
  8. Briggs, JC 1995Global biogeographyElsevierAmsterdamGoogle Scholar
  9. Britz, R 1997Egg surface structure and larval cement glands in nandid and badid fishes with remarks on phylogeny and biogeographyAm Mus Novit3195117Google Scholar
  10. Chatterjee, K 1989

    Cytotaxonomic and electrophoretic investigations on Indian air-breathing fishes

    Das, PJhingran, AG eds. Fish genetics in IndiaToday & Tomorrow's Printers and PublishersNew Delhi8399
    Google Scholar
  11. Courtenay, WR, Williams, JD 2004Snakeheads (Pisces, Channidae): a biological synopsis and risk assessment. US Geological Survey Circular 1251US Geological SurveyDenver, COGoogle Scholar
  12. Darlington, PJ,Jr 1957Zoogeography: the geographical distributions of animalsWileyNew YorkGoogle Scholar
  13. Day, F 1876The fishes of India; being a natural history of the fishes known to inhabit the seas and fresh waters of India, Burma, and CeylonFishes India Part2169368pls 41–78Google Scholar
  14. Dhar, NJ, Chatterjee, K 1984Chromosomal evolution in Indian murrels (Channiformes: Channidae)Caryologia37359371Google Scholar
  15. Farias, IP, Ortí, G, Sampaio, I, Schneider, H, Meyer, A 1999Mitochondrial DNA phylogeny of the family Cichlidae: monophyly and fast molecular evolution of the Neotropical assemblageJ Mol Evol48703711PubMedCrossRefGoogle Scholar
  16. Gosline, WA 1971Functional morphology and classification of teleostean fishesThe University Press of HawaiiHonoluluGoogle Scholar
  17. Günther,  1861Catalogue of the Acanthopterygian fishes in the collection of the British Museum, vol 3British MuseumLondonGoogle Scholar
  18. Hay, MS, Hodgkiss, IJ 1981Hong Kong freshwater fishesUrban Council PublicationHong KongGoogle Scholar
  19. Huelsenbeck, JP, Ronquist, FR 2001MRBAYES: Bayesian inference of phylogenetic treesBioinformatics17754755PubMedCrossRefGoogle Scholar
  20. Jaeger, J-J, Courtillot, V, Tapponnier, P 1989Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary, and the India-Asia collisionGeology17316319CrossRefGoogle Scholar
  21. Kottelat, M 2001Fishes of LaosWHT Publications, ColomboSri LankaGoogle Scholar
  22. Kumar, S, Hedges, SB 1998A molecular timescale for vertebrate evolutionNature (Lond)392917920CrossRefGoogle Scholar
  23. Kumazawa, Y, Nishida, M 1993Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogeneticsJ Mol Evol37380398PubMedCrossRefGoogle Scholar
  24. Kumazawa, Y, Nishida, M 2000Molecular phylogeny of osteoglossoids: a new model for Gondwanian origin and plate tectonic transportation of the Asian arowanaMol Biol Evol1718691878PubMedGoogle Scholar
  25. Kumazawa, Y, Ota, H, Nishida, M, Ozawa, T 1996Gene rearrangements in snake mitochondrial genomes: highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA gene clusterMol Biol Evol1312421254PubMedGoogle Scholar
  26. Kumazawa, Y, Yamaguchi, M, Nishida, M 1999

    Mitochondrial molecular clocks and the origin of euteleostean biodiversity: familial radiation of perciforms may have predated the Cretaceous/Tertiary boundary

    Kato, M eds. The biology of biodiversitySpringerTokyo3552
    Google Scholar
  27. Kumazawa, Y, Azuma, Y, Nishida, M 2004Tempo of mitochondrial gene evolution: can mitochondrial DNA be used to date old divergences?Endocytobiosis Cell Res15136142Google Scholar
  28. Lee PG, Ng PKL, Chan WK (1994) The use of two non-mutilative character determination methods for studying the relationship of snakehead fishes (Teleostei; Channidae) in Singapore & Peninsular Malaysia. Proceedings of the fourth Indo-Pacific fish conference. Faculty of Fisheries, Kasetsart University, Bangkok, pp 60–75Google Scholar
  29. Mabuchi, K, Miya, M, Satoh, TP, Westneat, MW, Nishida, M 2004Gene rearrangements and evolution of tRNA pseudogenes in the mitochondrial genome of the parrotfish (Teleostei: Perciformes: Scaridae)J Mol Evol59287297PubMedCrossRefGoogle Scholar
  30. Maehata, M 1989

    Channa argus

    Kawanabe, HMizuno, N eds. Nippon no tansuigyo (Japanese freshwater fishes) (in Japanese)Yama-Kei PublTokyo470473
    Google Scholar
  31. Mai, DY 1978Identification of freshwater fishes of northern Viet Nam (in Vietnamese)Scientific & Technology PublisherHanoiGoogle Scholar
  32. Metcalfe, I 1999

    Gondwana dispersion and Asian accretion: an overview

    Metcalfe, I eds. Gondwana dispersion and Asian accretionBalkema AA, RotterdamNetherlands928
    Google Scholar
  33. Miya, M, Takeshima, H, Endo, H, Ishiguro, NB, Inoue, JG, Mukai, T, Satoh, TP, Yamaguchi, M, Kawaguchi, A, Mabuchi, K, Shirai, SM, Nishida, M 2003Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequencesMol Phylogenet Evol26121138PubMedCrossRefGoogle Scholar
  34. Musikasinthorn, P 1998 Channa panaw, a new channid fish from the Irrawaddy and Sittang River basins, MyanmarIchthyol Res45355362Google Scholar
  35. Musikasinthorn, P 2000 Channa aurantimaculata, a new channid fish from Assam (Brahmaputra River basin), India, with designation of a neotype for C. amphibeus (McClelland, 1845)Ichthyol Res472737Google Scholar
  36. Musikasinthorn P (2003) Channoidei (snakeheads). In: Hutchins M, Thoney A, Loiselle PV, Schlager N (eds) Grzimek's animal life encyclopedia, 2nd edn, vols 4, 5. Fishes I–II. Gale Group, Farmington Hills, MI, pp 437–447Google Scholar
  37. Musikasinthorn, P, Taki, Y 2001 Channa siamensis (Günther, 1861), a junior synonym of Channa lucius (Cuvier in Cuvier and Valenciennes, 1831)Ichthyol Res48319324CrossRefGoogle Scholar
  38. Myers, GS 1951Fresh-water fishes and East Indian zoogeographyStanford Ichthyol Bull41121Google Scholar
  39. Myers, GS, Shapovalov, L 1931On the identity of Ophicephalus and Channa, two genera of labyrinth fishesPeking Nat Hist Bull63337Google Scholar
  40. Nelson, JS 1994Fishes of the world3rd edn.WileyNew YorkGoogle Scholar
  41. Ng, PKL, Lim, KKP 1990

    Snakeheads (Pisces: Channidae): natural history, biology and economic importance

    Ming, CLNg, PKL eds. Essays in zoology: papers commemorating the 40th anniversary of the Department of ZoologyNational University of SingaporeSingapore127152
    Google Scholar
  42. Ng, PKL, Lim, KKP 1991The identity of Ophicephalus cyanospilos Bleeker from Sumatra, and a new record of Channa bankanensis (Bleeker) from Peninsular Malaysia (Pisces: Channidae)Raffles Bull Zool39119130Google Scholar
  43. Pethiyagoda, R 1991Freshwater fishes of Sri LankaWildlife Heritage Trust of Sri LankaColomboGoogle Scholar
  44. The Plates Project (1998) Atlas of paleogeographic reconstructions. Plates progress report no. 215. Technical report no. 181. University of Texas Institute for Geophysics, AustinGoogle Scholar
  45. Posada, D, Crandall, KA 1998Modeltest: testing the model of DNA substitutionBioinformatics14817818PubMedCrossRefGoogle Scholar
  46. Roe, LJ 1991Phylogenetic and ecological significance of Channidae (Osteichthys, Teleostei) from the early Eocene Kuldana Formation of Kohat, PakistanUniv Mich Contrib Mus Paleontol2893100Google Scholar
  47. Rögl, F 1998Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene)Ann Naturhist Mus Wien99A279311Google Scholar
  48. Romer, AS, Parsons, TS 1977The vertebrate body5th edn.SaundersPhiladelphiaGoogle Scholar
  49. Rosen, DE, Patterson, C 1990On Müller's and Cuvier's concepts sof pharyngognath and labyrinth fishes and the classification of percomorph fishes, with an atlas of percomorph dorsal gill archesAm Mus Novit2983157Google Scholar
  50. Rüber, L, Britz, R, Kullander, SO, Zardoya, R 2004Evolutionary and biogeographic patterns of the Badidae (Teleostei: Perciformes) inferred from mitochondrial and nuclear DNA sequence dataMol Phylogenet Evol3210101022PubMedCrossRefGoogle Scholar
  51. Senna, A 1924Sull'organe respiratoria soprobranchiale degli Afiocefalidi e sus semplificazione in Parophiocephalus subg. NMonit Zool Ital35149160Google Scholar
  52. Smith, AG, Smith, DG, Funnell, BM 1994Atlas of Mesozoic and Cenozoic coastlinesCambridge University PressNew YorkGoogle Scholar
  53. Sparks, JS, Smith, WL 2005Freshwater fishes, dispersal ability, and nonevidence: “Gondwana life rafts” to the rescueSyst Biol54158165PubMedCrossRefGoogle Scholar
  54. Stiassny, MLJ 1991

    Phylogenetic intrarelationships of the family Cichlidae: an overview

    Keenleyside, MHA eds. Cichlid fishes: behaviour, ecology and evolutionChapman & HallLondon135
    Google Scholar
  55. Streelman, JT, Zardoya, R, Meyer, A, Karl, SA 1998Multilocus phylogeny of cichlid fishes (Pisces: Perciformes): evolutionary comparison of microsatellite and single-copy nuclear lociMol Biol Evol15798808PubMedGoogle Scholar
  56. Swofford, DL 2003PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4Sinauer AssociatesSunderland, MAGoogle Scholar
  57. Teugels, GG 1992


    Leveque, CPaugy, DTeugels, GG eds. The fresh and brackish water fishes of west Africa, vol 2ORSTOM et MRACParis655658
    Google Scholar
  58. Teugels, GG, Daget, J 1984 Parachanna nom. nov. for the African snake-heads and rehabilitation of Parachanna insignis (Sauvage 1984) (Pisces Channidae)Cybium817Google Scholar
  59. Thorne, JL, Kishino, H, Painter, IS 1998Estimating the rate of evolution of the rate of molecular evolutionMol Biol Evol1516471657PubMedGoogle Scholar
  60. Wolstenholme, DR 1992Animal mitochondrial DNA: structure and evolutionInt Rev Cytol141173216PubMedCrossRefGoogle Scholar
  61. Yang, Z 1997PAML: a program package for phylogenetic analyses by maximum likelihoodCABIOS13555556PubMedGoogle Scholar
  62. Zhang, C-G, Musikasinthorn, P, Watanabe, K 2002 Channa nox, a new channid fish lacking a pelvic fin from Guangxi, ChinaIchthyol Res49140146CrossRefGoogle Scholar

Copyright information

© The Ichthyological Society of Japan 2006

Authors and Affiliations

  • Xia Li
    • 1
  • Prachya Musikasinthorn
    • 2
  • Yoshinori Kumazawa
    • 1
    • 3
  1. 1.Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
  2. 2.Department of Fishery Biology, Faculty of FisheriesKasetsart University, ChatuchakBangkokThailand
  3. 3.Division of Material Science, Graduate School of ScienceNagoya UniversityNagoyaJapan

Personalised recommendations