European Journal of Psychology of Education

, Volume 33, Issue 3, pp 427–444 | Cite as

Policy impact of PISA on mathematics education: the case of Norway

  • Guri A. NortvedtEmail author


This article addresses the policy implications of participation in international large-scale assessments (ILSAs), particularly the Programme for International Student Assessment (PISA), and the ways in which such implications might influence mathematics education. Taking Norway as a special case, this discussion focuses on insights into teaching, learning and assessment practices that can be inferred from the PISA study, and how participation in ILSAs has contributed to educational policy and even changed policymakers’ perspectives on schools, teachers and students. Following publication of the PISA 2000 results, Norway experienced a ‘PISA shock’, leading to the implementation of a national quality assessment system and national tests. In addition, changes were made to the mathematics curriculum for compulsory school and to mathematics teacher education. More recently, public debate has focused less on rank and league tables, shifting instead to the high number of low-achieving students and the low number of high achievers. Moreover, there has been little uptake of policy advice provided by the Organisation for Economic Co-operation and Development (OECD), which focuses on strengthening accountability measures. Furthermore, although the Norwegian educational system in the past decade has undergone a decentralisation process, the educational system still follows the Nordic model, which focuses on equity and ‘education for all’. Analyses of the Norwegian case indicate that policymaking takes place in highly cultural contexts, and that international studies might be used merely to validate existing policy directions.


International large-scale assessment PISA Policymaking Educational reform Norway Mathematics education 



  1. Anderson, L. W., & Postlethwaite, T. N. (2007). Program evaluation: large-scale and small-scale studies. International Academy of Education: International Institute for Education Planning.
  2. Auld, E., & Morris, P. (2016). PISA, policy and persuasion: translating complex conditions into education ‘best practice’. Comparative Education, 52(2), 202–229.CrossRefGoogle Scholar
  3. Baird, J.-A., Johnson, S., Hopfenbeck, T. H., Isaacs, T., Sprague, T., Stobart, G., & Yu, G. (2016). On the supranational spell of PISA in policy. Educational Research, 58(2), 121–138.CrossRefGoogle Scholar
  4. Bergersen, H. O. (2005). Kampen om kunnskapsskolen [The battle for the knowledge-based school]. Oslo: Universitetsforlaget.Google Scholar
  5. Berliner, D. C. (2011). Rational responses to high stakes testing: the case of curriculum narrowing and the harm that follows. Cambridge Journal of Education., 41(3), 287–302.CrossRefGoogle Scholar
  6. Birkeland, P. A., & Breiteig, T. (2012). Norsk lærerutdanning i et internasjonalt perspektiv [Norwegian teacher education in an international perspective]. In L. S. Grønmo & T. Onstad (Eds.), Mange og store utfordringer. Et nasjonalt og internasjonalt perspektiv på utdanning av lærere i matematikk basert på data fra TEDS-M 2008 (pp. 35–60). Oslo: Unipub.Google Scholar
  7. Breakspear, S. (2012). The policy impact of PISA: an exploration of the normative effects of international benchmarking in school system performance (OECD Education Working Papers No. 71).
  8. Breiteig, T. (2013). Preparing teachers of mathematics in Norway. In J. Schwille, L. Ingvarson, & R. Holdgreve-Resendez (Eds.), TEDS-M encyclopedia: a guide to teacher education context, structure, and quality assurance in 17 countries: findings from the IEA teacher education and development study in mathematics (TEDS-M) (pp. 131–148). Hamburg: IEA.Google Scholar
  9. Burkhardt, H. (2014). Curriculum design and curriculum change. In Y. Li & G. Lappan (Eds.), Mathematics curriculum in school education (pp. 13–33). Dordrecht: Springer.CrossRefGoogle Scholar
  10. Cai, J., Hwang, S., & Middleton, J. A. (2015). The role of large-scale studies in mathematics education. In J. A. Middleton, S. Hwang, & J. Cai (Eds.), Large-scale studies in mathematics education (pp. 405–414). Dordrecht: Springer.CrossRefGoogle Scholar
  11. Cai, J., Mok, I. A. C., Reddy, V., & Stacey, K. (2016). International comparative studies in mathematics: lessons for improving students’ learning. In ICME-13 topical surveys (pp. 1–36). Hamburg: ZDM.Google Scholar
  12. Clarke, D. (2013). The validity-comparability compromise in crosscultural studies in mathematics education. In B. Ubuz, Ç. Haser, & M. A. Mariotti (Eds.), Proceedings of the Eighth Congress of the European Society for Research in Mathematics Education (pp. 1855–1864). Antalya: ERME.Google Scholar
  13. De Lange, J. (2007). Large-scale assessment and mathematics education. In F. K. J. Lester (Ed.), Second handbook of research on mathematics teaching (Vol. 2, pp. 1111–1142). Charlotte: Information Age Publishing.Google Scholar
  14. Elstad, E., Nortvedt, G. A., & Turmo, A. (2009). The Norwegian assessment system: an accountability perspective. Cadmo, 17(2), 89–103.Google Scholar
  15. Frønes, T. S., Roe, A., & Vagle, W. (2012). Nasjonale prøver i lesing - utvikling, resultater og bruk [National tests in reading, development, results and use]. In T. H. Hopfenbeck, M. Kjærnsli, & R. V. Olsen (Eds.), Kvalitet i norsk skole: Internasjonale og nasjonale undersøkelser av læringsutbytte og undervisning (pp. 135–153). Oslo: Universitetsforlaget.Google Scholar
  16. Goldstein, H. (2017). Measurement and evaluation issues with PISA. In L. Volante (Ed.), The PISA effect on global educational governance (pp. 49–58). London: Routledge.Google Scholar
  17. Gorur, R., & Wu, M. (2015). Leaning too far? PISA, policy and Australia’s ‘top five’ ambitions. Discourse: Studies in the Cultural Politics of. Education, 36(5), 647–664.Google Scholar
  18. Grønmo, L. S., & Bergem, O. K. (2009). Prestasjoner i matematikk [Achievement in mathematics]. In L. S. Grønmo and T. Onstad (Eds.), Tegn til bedring. Norske elevers prestasjoner i matematikk og naturfag i TIMSS 2007 (pp. 49–111). Oslo: Unipub.Google Scholar
  19. Grønmo, L. S., Onstad, T., Nilsen, T., Hole, A., Aslaksen, H., & Borge, I. C. (2012). Framgang, men langt fram. Norske elevers prestasjoner i matematikk og naturfag i TIMSS 2011 [Progress but still a long way to go. Norwegian students’ achievement in mathematics and science in TIMSS 2011]. Oslo: Akademika Forlag.Google Scholar
  20. Helgøy, I., & Homme, A. (2006). Policy tools and institutional change: comparing education policies in Norway, Sweden and England. Journal of Public Policy, 26(2), 141–165.CrossRefGoogle Scholar
  21. Hiebert, J., Gallimore, R., Givvin, K.B. (2003). Teaching mathematics in seven countries: results from the TIMSS 1999 video study. Washington, DC: National Centre for Educational Statistics.Google Scholar
  22. Ho, E. C. H. (2016). The use of large-scale assessment (PISA): insights for policy and practice in the case of Hong Kong. Research Papers in Education, 31, 5516–5528.Google Scholar
  23. Hopfenbeck, T. H., & Görgen, K. (2017). The politics of PISA: the media, policy and public responses in Norway and England. European Journal of Education, 52(2), 195–205.CrossRefGoogle Scholar
  24. Hopfenbeck, T. H., Tolo, A., Florez, T., & El Mastri, Y. (2013). Balancing trust and accountability? The assessment for learning programme in Norway: a governing complex educational systems case study. Retrieved from
  25. Hopfenbeck, T. H., Lenkeit, J., El Mastri, Y., Cantrell, K., Ryan, J., & Baird, J.-A. (2017). Lessons learned from PISA: a systemic review of peer-reviewed articles on the programme for international student achievement. Scandinavian Journal of Educational Research. [online first] 1–21. 62(3), 333- 353Google Scholar
  26. Imsen, G., Blossing, U., & Moos, L. (2016). Reshaping the Nordic education model in an era of efficiency. Changes in the comprehensive school project in Denmark, Norway, and Sweden since the millennium. Scandinavian Journal of Educational Research, 1–16.
  27. Jerrim, J. (2013). The reliability of trends over time in international education test scores: is the performance of England’s secondary school pupils really in relative decline? Journal of Social Policy, 42(2), 259–279.CrossRefGoogle Scholar
  28. Kilpatrick, J. (2014). Competency frameworks in mathematics education. In F. K. J. Lester (Ed.), Encyclopedia of mathematics education (pp. 85–87). Amsterdam: Springer.Google Scholar
  29. Klette, K., Bergem, O. K., & Roe, A. (2016). Teaching and learning in lower secondary schools in the era of PISA and TIMSS. Dordrecht: Springer.CrossRefGoogle Scholar
  30. Klieme, E. (2017). International large-scale assessments. Keynote presentation at the 18th annual conference for the Association for Educational Assessment Europe, Prague, November 9–11.Google Scholar
  31. Kreiner, S., & Christensen, K. B. (2014). Analyses of model fit and robustness. A new look at the PISA scaling model underlying ranking of countries according to reading literacy. Psychometrika, 79(2), 210–231.CrossRefGoogle Scholar
  32. Lesh, R. A., & Doerr, H. M. (2003). Beyond constructivism: models and modeling perspectives on mathematics problem solving, teaching, and learning. Mahwah: Lawrence Erlbaum.Google Scholar
  33. Lesh, R. A., & Zawojewski, J. (2007). Problem solving and modeling. In F. K. J. Lester (Ed.), Second handbook of research on mathematics teaching and learning (Vol. 2, pp. 763–804). Charlotte: Information Age.Google Scholar
  34. Lockheed, M. E. (2015). Why do countries participate in international large-scale assessments? The case of PISA (Policy Research Working Paper No. 7447). Washington, DC, World Bank Group.Google Scholar
  35. Martin, M. O., Mullis, I. V. S., & Hooper, M. (2016). Methods and procedures in TIMSS 2015. Retrieved from
  36. Middleton, J. A., Cai, J., & Hwang, S. (2015). Why mathematics education needs large-scale research. In J. A. Middleton, J. Cai, & S. Hwang (Eds.), Large-scale studies in mathematics education (pp. 1–3). Heidelberg: Springer.Google Scholar
  37. Ministry of Education and Research. (2012). Oppdragsbrev 42–10. [Description of task 42–10]. Oslo.Google Scholar
  38. Ministry of Education and Research. (2015). Realfagstrategi - Tett på realfag. Nasjonal strategi for realfag i barnehagen og grunnopplæringen (2015–2019). [Strategy for mathematics and sciences. National strategy for mathematics and sciences in kindergarden and compulsory education (2015–2019)]. Oslo, Norway: Author.Google Scholar
  39. Ministry of Education and Research. (2016a). Slik blir den nye lærerutdanningen [This is how the new teacher education will be] (Press release). Retrieved from
  40. Ministry of Education and Research. (2016b). Norske 15-åringer i toppsjiktet i lesing [Norwegian 15-year olds in the lead in reading]. (Press release) December 16, 2012. No: 107–116. Retrieved from
  41. Mullis, I. V. S., Martin, M. O., Foy, P., & Hooper, M. (2016a). TIMSS 2015 international results in mathematics. Boston: Boston College, TIMSS and PIRLS International Study Center.Google Scholar
  42. Mullis, I. V. S., Martin, M. O., Foy, P., & Hooper, M. (2016b). TIMSS advanced 2015 international results in advanced mathematics and physics. Boston: Boston College, TIMSS and PIRLS International Study Center.Google Scholar
  43. NDET (2017). The education mirror. Retrieved from
  44. Nilsen, T., Angell, C., & Grønmo, L. S. (2013). Mathematical competencies and the role of mathematics in physics education: a trend analysis of TIMSS advanced 1995 and 2008. Acta Didactica Norge, 7(1), 1–21.CrossRefGoogle Scholar
  45. Niss, M. (1996). Goals of mathematics teaching. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook on mathematics education (pp. 11–47). Amsterdam: Springer.Google Scholar
  46. Niss, M. (2007). Reflections on the state of and trends in research on mathematics teaching and learning. In F. K. J. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1293–1312). Charlotte: Information Age.Google Scholar
  47. Niss, M., & Højgaard, T. (2011). Competencies and mathematical learning: ideas and inspiration for the development of mathematics teaching and learning in Denmark (English edition). Roskilde: IMFUMFA.Google Scholar
  48. Niss, M., & Jablonka, E. (2014). Mathematical literacy. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 391–396). Dordrecht: Springer.Google Scholar
  49. Niss, M., Blum, W., & Galbraith, P. L. (2007). Introduction. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: the 14th ICMI study (pp. 3–32). Boston: Springer Science + Business Media.CrossRefGoogle Scholar
  50. Niss, M., Bruder, R., Planas, N., Turner, R., & Villa-Ochoa, J. A. (2016). Survey team on: conceptualisation of the role of competencies, knowing and knowledge in mathematics education research. ZDM Mathematics Education, 48(5), 611–632.CrossRefGoogle Scholar
  51. Nortvedt, G. A. (2013a). Matematikk i PISA - matematikkdidaktiske perspektiver [Mathematics in PISA]. In M. Kjærnsli & R. V. Olsen (Eds.), Fortsatt en vei å gå. Norske elevers kompetanse i matematikk, naturfag og lesing i PISA 2012 [The Norwegian PISA Report] (pp. 43–66). Oslo: Universitetsforlaget.Google Scholar
  52. Nortvedt, G. A. (2013b). Resultater i matematikk [Results in mathematics]. In M. Kjærnsli & R. V. Olsen (Eds.), Fortsatt en vei å gå. Norske elevers kompetanse i matematikk, naturfag og lesing i PISA 2012 [The Norwegian PISA Report] (pp. 67–95). Oslo: Universitetsforlaget.Google Scholar
  53. Nortvedt, G. A., & Pettersen, A. (2016). Matematikk [Mathematics]. In M. Kjærnsli & F. Jensen (Eds.), Stø kurs. Norske elevers kompetanse i naturfag, matematikk og lesing i PISA 2015 [Norwegians students competence in reading, mathematics and science in PISA 2015] (pp. 107–135). Oslo: Universitetsforlaget.Google Scholar
  54. Nortvedt, G. A., Santos, L., & Pinto, J. (2016). Assessment for learning in Norway and Portugal: the case of primary school mathematics teaching. Assessment in education: Principles, Policy & Practice, 23(3), 377–395.CrossRefGoogle Scholar
  55. Norwegian Directorate for Education and Training (NDET). (2015). Curriculum for the common core subject of mathematics. Retrieved from
  56. Nusche, D., Earl, N., Maxwell, W., & Shewbridge, C. (2011). OECD reviews of evaluation and assessment in education: Norway. Paris: OECD Publishing.CrossRefGoogle Scholar
  57. OECD. (2013a). PISA2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy. Paris: OECD Publishing.Google Scholar
  58. OECD. (2013b). PISA 2012 results: student performance in mathematics, reading, science (Vol. 1). Paris: OECD Publishing.Google Scholar
  59. OECD. (2013c). PISA 2012 results: ready to learn. Students’ engagement, drive and self-beliefs (Vol. 3). Paris: OECD Publishing.Google Scholar
  60. OECD. (2016). PISA 2015 results: excellence and equity in education. Paris: OECD Publishing.Google Scholar
  61. OECD. (2017a). PISA: Programme for International Student Achievement. Retrieved from
  62. OECD. (2017b). PISA 2015 technical report. Retrieved from
  63. Olsen, R. V. (2013). Undervisning i matematikk [Mathematics teaching]. In M. Kjærnsli & R. V. Olsen (Eds.), Fortsatt en vei å gå. Norske elevers kompetanse i matematikk, naturfag og lesing i PISA 2012 (pp. 121–156). Oslo: Universitetsforlaget.Google Scholar
  64. Olsen, R. V., Hopfenbeck, T. N., & Lillejord, S. (2013). Elevenes læringssituasjon etter Kunnskapsløftet. [The conditions and situation for learning after the introduction of the knowledge promotion]. Norsk Pedagogisk Tidsskrift, 97(6), 355–369.Google Scholar
  65. Organisation for Economic Co-operation and Development (OECD). (2013). PISA2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy. Paris: OECD Publishing.Google Scholar
  66. Pons, X. (2016). Tracing the French policy PISA debate: a policy configuration approach. European Educational Research Journal, 15(5), 580–597.CrossRefGoogle Scholar
  67. Postlethwaite, T. N. (1988). Encyclopedia of comparative education and national systems of education. Oxford: Pergamon.Google Scholar
  68. Ræder, H. G. (2017). Matematikk i fysikkoppgaver [Mathematics in physic tasks] (Master’s thesis). Department for Teacher Education and School Research. Norway: University of Oslo.Google Scholar
  69. Sälzer, C., & Prenzel, M. (2014). Looking back at five rounds of PISA: impacts on teaching and learning in Germany. Solsko Polje, 25(5/6), 53–72.Google Scholar
  70. Sjøberg, S. (2014). PISA-syndromet. Hvordan norsk skolepolitikk blir styrt av OECD [The PISA-syndrome. How Norwegian education policy is steered by OECD]. Nytt Norsk Tidsskrift, 31(1), 30–43.Google Scholar
  71. Steiner-Khamsi, G. (2003). The politics of league tables. Journal of Social Science Education, 1, 1–6.Google Scholar
  72. Stobart, G. (2008). Testing times: the uses and abuses of assessment. Oxford: Routledge.Google Scholar
  73. Turner, R., Dossey, J., Blum, W., & Niss, M. (2013). Using mathematical competencies to predict item difficulty in PISA: a MEG study. In M. Prenzel, M. Koberg, K. Schöps, & S. Rönnebeck (Eds.), Research on PISA: research outcomes of the PISA Research Conference 2009 (pp. 23–37). Dordrecht: Springer.CrossRefGoogle Scholar
  74. Tveit, S. (2014). Educational assessment in Norway. Assessment in education: Principles, policy and practice, 21(2), 221–237.CrossRefGoogle Scholar
  75. Välijärvi, J., Linnakylä, P., Kupari, P., Reinikainen, P., & Arffman, I. (2002). The Finnish success in PISA—and some reasons behind it: PISA 2000. Jyväskylä: Institute for Educational Research, University of Jyväskylä.Google Scholar
  76. Zhao, Y., & Meyer, H.-D. (2013). High on PISA, low on entrepreneurship? What PISA does not measure. In H.-D. Meyer & A. Benavot (Eds.), PISA, power and policy: the emergence of global educational governance (pp. 267–278). Oxford: Symposium Books.Google Scholar

Copyright information

© Instituto Superior de Psicologia Aplicada, Lisboa, Portugal and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department for Teacher Education and School ResearchUniversity of Oslo, NorwayOsloNorway

Personalised recommendations