Advertisement

Emotional and motivational relationship of elementary students to mathematical problem-solving: a person-centered approach

  • Vanessa HaninEmail author
  • Catherine Van Nieuwenhoven
Article
  • 17 Downloads

Abstract

Recent literature has shown that achievement emotions, their regulation, and perceived competence play a compelling role in mathematics learning and achievement. Studies that have looked at these variables have, for the most part, adopted a person-centered approach, which examines relationships between variables found to a similar degree in all individuals of the group. Yet, scholars have outlined emotional inter-individual differences, in particular, in terms of gender and past performance. The present study examined differences among upper elementary students in how achievement emotions are related to each other. Cluster analysis revealed four distinct profiles based on a sample of upper elementary students (N = 354): those with high levels of positive emotions and low levels of negative emotions (positive); those with high levels of boredom and low levels of the other emotions (bored); those with high levels of nervousness, worry, and fear and low levels of positive emotions (anxious); and those with high levels of the six negative distinct emotions assessed and low levels of positive emotions (resigned). Analyses of variance showed that the first profile stood out advantageously from the last two regarding math performance and perceived competence. Findings regarding emotion regulation confirm the risky nature of the resigned profile. The bored profile ascribes no value, whether extrinsic or intrinsic, to problem-solving tasks. Practical implications for educational practices and possible avenues for further research are discussed.

Keywords

Academic emotions Perceived competence Mathematics performance Cluster analysis Elementary students 

Notes

References

  1. Ahmed, W., Minnaert, A., van der Werf, G., & Kuyper, H. (2010). The role of competence and value beliefs in students’ daily emotional experiences: a multilevel test of a transactional model. Learning and Individual Differences, 20(5), 507–511.  https://doi.org/10.1016/j.lindif.2010.03.005.Google Scholar
  2. Ahmed, W., Minnaert, A., Kuyper, H., & van der Werf, G. (2012). Reciprocal relationships between math self-concept and math anxiety. Learning and Individual Differences, 22(3), 385–389.  https://doi.org/10.1016/j.lindif.2011.12.004.Google Scholar
  3. Ahmed, W., van der Werf, G., Kuyper, H., & Minnaert, A. (2013). Emotions, self-regulated learning, and achievement in mathematics: a growth curve analysis. Journal of Educational Psychology, 105(1), 150–161.  https://doi.org/10.1037/a0030160.Google Scholar
  4. Aldenderfer, M. S., & Blashfield, R. K. (1984). Cluster analysis. Newbury Park: Sage.Google Scholar
  5. Alivernini, F., & Lucidi, F. (2011). Relationship between social context, self-efficacy, motivation, academic achievement, and intention to drop out of high school: a longitudinal study. The Journal of Educational Research, 104(4), 241–252.  https://doi.org/10.1080/00220671003728062.Google Scholar
  6. Ambady, N., Shih, M., Kim, A., & Pittinsky, T. L. (2001). Stereotype susceptibility in children: effects of identity activation on quantitative performance. Psychological Science, 12(5), 385–390.  https://doi.org/10.1111/1467-9280.00371.Google Scholar
  7. Artino, A. R. (2009). Think, feel, act: motivational and emotional influences on military students’ online academic success. Journal of Computing in Higher Education, 21(2), 146–166.  https://doi.org/10.1007/s12528-009-9020-9.Google Scholar
  8. Artino, A. R. (2012). Academic self-efficacy: from educational theory to instructional practice. Perspectives on Medical Education, 1(2), 76–85.  https://doi.org/10.1007/s40037-012-0012-5.Google Scholar
  9. Hanin, V., Grégoire, J., Mikolajczak, M., Fantini-Hauwel, & Van Nieuwenhoven, C. (2017). Children’s Emotion Regulation Scale in Mathematics (CERS-M): development and validation of a selfreported instrument. Psychology, 8(13), 2240–2275.Google Scholar
  10. Hanin, V., & Van Nieuwenhoven, C. (2016). The influence of motivational and emotional factors in mathematical learning in secondary education. European Review of Applied Psychology, 66(3), 127–138.Google Scholar
  11. Hanin, V., & Van Nieuwenhoven, C. (2018a). Developing an expert and reflexive approach to problemsolving: the place of emotional knowledge and skills. Psychology, 9(2), 280–309.Google Scholar
  12. Hanin, V., & Van Nieuwenhoven, C. (2018b). Evaluation d’un dispositif d’enseignement apprentissage en resolution de problèmes mathématiques: Evolution des comportements cognitifs, métacognitifs, motivationnels et émotionnels d’un résolveur novice et expert. Evaluer. Journal international de Recherche en Education et Formation, 4(1), 37–66.Google Scholar
  13. Bandura, A. (1997). Self-efficacy: the exercise of control. New York: Freeman.Google Scholar
  14. Ben-Eliyahu, A., & Linnenbrink-Garcia, L. (2013). Extending self-regulated learning to include self-regulated emotion strategies. Motivation and Emotion, 37(3), 558–573.  https://doi.org/10.1007/s11031-012-9332-3.Google Scholar
  15. Bergman, L. R. (1998). A pattern-oriented approach to studying individual development: snapshots and processes. In R. B. Cairns, L. R. Bergman, & J. Kagan (Eds.), Methods and model for studying the individual (pp. 83–122). Thousand Oaks: Sage.Google Scholar
  16. Boekaerts, M. (2002). The on-line motivation questionnaire: a self-report instrument to assess students’ context sensitivity. In P. R. Pintrich & M. L. Maehr (Eds.), Advances in motivation and achievement: new directions in measures and methods (Vol. 12, pp. 77–120). Amsterdam: JAI.Google Scholar
  17. Bouffard, T., & Vezeau, C. (2010). Intention d’apprendre, motivation et apprentissage autorégulé: le rôle de la perception de compétence et des émotions [Intention to learn, motivation and self-regulated learning: the role of perception of competence and emotions]. In M. Crahay & M. Dutrevis (Eds.), Psychologie des apprentissages scolaires [Psychology of educational learning] (pp. 66–84). Bruxelles: De Boeck.Google Scholar
  18. Breckenridge, J. N. (2000). Validating cluster analysis: consistent replication and symmetry. Multivariate Behavioral Research, 35(2), 261–285.  https://doi.org/10.1207/s15327906mbr3502_5.Google Scholar
  19. Bressoux, P. (2010). Modélisation statistique appliquée aux sciences sociales [Statistical modeling applied to social sciences]. Bruxelles, De Boeck.Google Scholar
  20. Brusco, M., & Cradit, J. (2001). A variable-selection heuristic for k-means clustering. Psychometrika, 66(2), 249–270.  https://doi.org/10.1007/BF02294838.Google Scholar
  21. Burić, I., Sorić, I., & Penezić, Z. (2016). Emotion regulation in academic domain: development and validation of the Academic Emotion Regulation Questionnaire (AERQ). Personality and Individual Differences, 96, 128–147.  https://doi.org/10.1016/j.paid.2016.02.074. Google Scholar
  22. Burke, C. A. (2010). Mindfulness-based approaches with children and adolescents: a preliminary review of current research in an emergent field. Journal of Child and Family Studies, 19(2), 133–144.  https://doi.org/10.1007/s10826-009-9282-x.Google Scholar
  23. Cheek, J. R., Bradley, L. J., Reynolds, J., & Coy, D. (2002). An intervention for helping elementary students reduce test anxiety. Professional School Counseling, 6(2), 162–164.Google Scholar
  24. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.Google Scholar
  25. Daniels, L. M., Haynes, T. L., Stupnisky, R. H., Perry, R. P., Newall, N. E., & Pekrun, R. (2008). Individual differences in achievement goals: a longitudinal study of cognitive, emotional, and achievement outcomes. Contemporary Educational Psychology, 33(4), 584–608.  https://doi.org/10.1016/j.cedpsych.2007.08.002.Google Scholar
  26. Daschmann, E. C., Goetz, T., & Stupnisky, R. (2011). Testing the predictors of boredom at school: development and validation of the precursors to boredom scales. British Journal of Educational Psychology, 81(3), 421–440.  https://doi.org/10.1348/000709910X526038.Google Scholar
  27. De Corte, E., Depaepe, F., Op’t Eynde, P., & Verschaffel, L. (2011). Students’ self-regulation of emotions in mathematics: an analysis of meta-emotional knowledge and skills. ZDM Mathematics Education, 43(4), 483–495.  https://doi.org/10.1007/s11858-011-0333-6.Google Scholar
  28. DeCarlo, L. T. (1997). On the meaning and use of kurtosis. Psychological Methods, 2(3), 292–307.  https://doi.org/10.1037/1082-989X.2.3.292.Google Scholar
  29. Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125(6), 627–668.  https://doi.org/10.1037/0033-2909.125.6.627.Google Scholar
  30. Depaepe, F., De Corte, E., & Verschaffel, L. (2015). Students’ non-realistic mathematical modeling as a drawback of teachers’ beliefs about and approaches to word problem solving. In B. Pepin & B. Roesken-Winter (Eds.), From beliefs to dynamic affect systems in mathematics education (pp. 137–156). New York: Springer International.Google Scholar
  31. Dweck, C. S. (1992). The study of goals in psychology. Psychological Science, 3(3), 165–167.  https://doi.org/10.1111/j.1467-9280.1992.tb00019.x. Google Scholar
  32. Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values and goals. Annual Review of Psychology, 53(1), 109–132.Google Scholar
  33. Else-Quest, N. M., Higgins, A., Allison, C., & Morton, L. C. (2012). Gender differences in self-conscious emotional experience: a meta-analysis. Psychological Bulletin, 138(5), 947–981.  https://doi.org/10.1037/a0027930.Google Scholar
  34. Fagnant, A., Demonty, I., & Lejonc, M. (2003). La résolution de problèmes: un processus complexe de modélisation mathématique [Problem solving: a complex process of mathematical modeling]. Bulletin d’informations pédagogiques, 54, 29–39.Google Scholar
  35. Fagnant, A., Dupont, V., & Demonty, I. (2016). Régulation interactive et résolution de tâches complexes en mathématiques [Interactive regulation and solving complex tasks in mathematics]. In L. Mottier Lopez & W. Tessaro (Eds.), Le jugement professionnel au cœur de l’évaluation et de la régulation des apprentissages [Professional judgment at the heart of assessment and regulation of learning] (pp. 175–214). Berne: Peter Lang.Google Scholar
  36. Feldman-Barrett, L., & Russell, J. A. (1998). Independence and bipolarity in the structure of current affect. Journal of Personality and Social Psychology, 74(4), 967–984.Google Scholar
  37. Ferguson, B., Tilleczek, K., Boydell, K., Rummens, J. A., Cote, D., & Roth-Edney, D. (2005). Early school leavers: understanding the lived reality of student disengagement from secondary school. Final report submitted to the Ontario Ministry of Education.Google Scholar
  38. Folkman, S., & Lazarus, R. S. (1988). Coping as a mediator of emotion. Journal of Personality and Social Psychology, 54(3), 466–475.Google Scholar
  39. Frenzel, A. C., Pekrun, R., & Goetz, T. (2007). Girls and mathematics. A “hopeless” issue? A control-value approach to gender differences in emotions towards mathematics. European Journal of Psychology of Education, 22(4), 497–514.  https://doi.org/10.1007/BF03173468.Google Scholar
  40. Galand, B., & Vanlede, M. (2004). Le sentiment d’efficacité personnelle dans l’apprentissage et la formation: quel rôle joue-t-il ? D’où vient-il ? Comment intervenir ? [The perception of self-efficacy in learning and training: what role does it play? Where does it come from? How to act?]. Savoirs, 5(5), 91–116.  https://doi.org/10.3917/savo.hs01.0091.Google Scholar
  41. Garnefski, N., Rieffe, C., Jellesma, F., Terwogt, M. M., & Kraaij, V. (2007). Cognitive emotion regulation strategies and emotional problems in 9 - 11-year-old dhildren. European Child & Adolescent Psychiatry, 16(1), 1–9.  https://doi.org/10.1007/s00787-006-0562-3. Google Scholar
  42. General Service of the Management of the Educational System. (2016). Les indicateurs d’enseignement [Teaching indicators]. Wallonia-Brussels: Ministry of the of Federation.Google Scholar
  43. Goetz, T., Frenzel, A. C., Pekrun, R., & Hall, N. C. (2005). Emotional intelligence in the context of learning and achievement. In R. Schulze & R. D. Roberts (Eds.), Emotional intelligence: an international handbook (pp. 233–253). Cambridge: Hogrefe & Huber.Google Scholar
  44. Goetz, T., Frenzel, A. C., Pekrun, R., Hall, N. C., & Lüdtke, O. (2007). Between- and within-domain relations of students’ academic emotions. Journal of Educational Psychology, 99(4), 715–733.  https://doi.org/10.1037/0022-0663.99.4.715.Google Scholar
  45. Goetz, T., Cronjaeger, H., Frenzel, A. C., Lüdtke, N., & Hall, C. (2010). Academic self-concept and emotion relations: domain specificity and age effects. Contemporary Educational Psychology, 35(1), 44–58.  https://doi.org/10.1016/j.cedpsych.2009.10.001.Google Scholar
  46. Goetz, T., Bieg, M., Lüdtke, O., Pekrun, R., & Hall, N. (2013). Do girls really experience more anxiety in mathematics? Psychological Science, 24(10), 2079–2087.  https://doi.org/10.1177/0956797613486989.Google Scholar
  47. Gross, J. J. (1998). Antecedent- and response-focused emotion regulation: divergent consequences for experience, expression and physiology. Journal of Personality and Social Psychology, 74(1), 224–237.  https://doi.org/10.1037/0022-3514.74.1.224.Google Scholar
  48. Haeffel, G. J. (2010). When self-help is no help: traditional cognitive skills training does not prevent depressive symptoms in people who ruminate. Behavior Research and Therapy, 48(2), 152–157.  https://doi.org/10.1016/j.brat.2009.09.016.Google Scholar
  49. Hayenga, A., & Corpus, J. (2010). Profiles of intrinsic and extrinsic motivations: a person-centered approach to motivation and achievement in middle school. Motivation and Emotion, 34(4), 371–383.  https://doi.org/10.1007/s111031-010-9181-x. Google Scholar
  50. Jacobs, J. E., Lanza, S., Osgood, D. W., Eccles, J., & Wigfield, A. (2002). Changes in children’s self-competence and values: gender and domain differences across grades one through twelve. Child Development, 73(2), 509–527.  https://doi.org/10.1111/1467-8624.00421.Google Scholar
  51. Johnston-Wilder, S., Lee, C., Brindley, J., & Garton, E. (2015) Developing mathematical resilience in school-students who have experienced repeated failure. Paper presented at the 8th annual International Conference of Education, Research and Innovation (ICERI2015), Seville, Spain.Google Scholar
  52. Justicia-Galiano, J., Martin-Puga, E., Linares, R., & Pelegrina, S. (2017). Math anxiety and math performance in children: the mediating roles of working memory and math self-concept. British Journal of Educational Psychology, 87(4), 573–589.  https://doi.org/10.1111/bjep.12165.Google Scholar
  53. Kaplan, A., & Maehr, M. (2002). Adolescents’ achievement goals: situating motivation in sociocultural contexts. In T. Urdan & F. Pajares (Eds.), Adolescence and education: vol. 2, academic motivation of adolescents (pp. 125–167). Greenwich: Information Age.Google Scholar
  54. Kim, C. M., & Hodges, C. B. (2012). Effects of an emotion control treatment on academic emotions, motivation and achievement in an online mathematics course. Instructional Science, 40(1), 173–192.  https://doi.org/10.1007/s11251-011-9165-6.Google Scholar
  55. Kramarski, B., Weiss, I., & Kololshi-Minsker, I. (2010). How can self-regulated learning (SRL) support problem solving of third-grade students with mathematics anxiety? ZDM Mathematics Education, 42(2), 179–193.  https://doi.org/10.1007/s11858-009-0202-8.Google Scholar
  56. Legendre, R. (1993). Dictionnaire actuel de l’éducation [Current dictionary of education] (2nd ed.). Montreal: Guérin.Google Scholar
  57. Leiss, D., Schukajlow, S., Blum, W., Messner, R., & Pekrun, R. (2010). The role of the situation model in mathematical modelling. Task analyses, student competencies, and teacher interventions. Journal für Mathematik-Didaktik, 31(1), 119–141.  https://doi.org/10.1007/s13138-010-0006-y.Google Scholar
  58. Lichtenfeld, S., Pekrun, R., Stupnisky, R. H., Reiss, K., & Murayama, K. (2012). Measuring students’ emotions in the early years: the Achievement Emotions Questionnaire-Elementary School (AEQ-ES). Learning and Individual Differences, 22(2), 190–201.  https://doi.org/10.1016/j.lindif.2011.04.009.Google Scholar
  59. Liebert, R. M., & Morris, L. W. (1967). Cognitive and emotional components of test anxiety: a distinction and some initial data. Psychological Reports, 20(3), 975–978.Google Scholar
  60. Lobrot, M. (1967). Batterie pour mesurer la lecture et l’orthographe, ORLEC [Test to measure reading and spelling]. Beaumont/Oise: Bureau d’études et de recherches.Google Scholar
  61. Lothaire, S., Dumay, X., & Dupriez, V. (2012). Pourquoi les enseignants quittent-ils leur école? Revue de la littérature scientifique relative au turnover des enseignants [Why do teachers leave school? Review of the scientific literature on teacher turnover]. Revue française de pédagogie. Recherches en éducation, 4(181), 99–126.  https://doi.org/10.4000/rfp.3931.Google Scholar
  62. Maddux, J. (2002). Self-efficacy: the power of believing you can. In C. R. Snyder & S. J. Lopez (Eds.), Handbook of positive psychology (pp. 277–287). New York: Oxford University Press.Google Scholar
  63. Magidson, J., & Vermunt, J. K. (2002). Latent class models for clustering: a comparison with K-means. Canadian Journal of Marketing, 20, 37–44.Google Scholar
  64. Maroy, C., & Cattonar, B. (2002). Pénurie et malaise enseignant [Teacher shortage and unease]. La Revue Nouvelle, 115(12), 44–62.Google Scholar
  65. Marsh, H. W., Lüdtke, O., Nagengast, B., Trautwein, U., Morin, A. J. S., Abduljabbar, A. S., & Köller, O. (2012). Classroom climate and contextual effects: conceptual and methodological issues in the evaluation of group-level effects. Educational Psychologist, 47(2), 106–124.Google Scholar
  66. Martin, A. J. (2004). School motivation of boys and girls: differences of degree, differences of kind, or both? Australian Journal of Psychology, 56(3), 133–146.  https://doi.org/10.1080/00049530412331283363.Google Scholar
  67. Midgley, C., Kaplan, A., & Middleton, M. (2001). Performance-approach goals: good for what, for whom, under what circumstances, and at what cost? Journal of Educational Psychology, 93(1), 77–86.  https://doi.org/10.1037/0022-0663.93.1.77.Google Scholar
  68. Mikolajczak, M. (2012). Approche empirique de la régulation des émotions [Empirical approach to emotion regulation]. In M. Mikolajczak & M. Desseilles (Eds.), Traité de régulation des émotions [Treatise on emotion regulation] (pp. 149–182, De Boeck). Brussels.Google Scholar
  69. Milligan, G. (1989). A validation study of a variable-weighting algorithm for cluster analysis. Journal of Classification, 6(1), 53–71.  https://doi.org/10.1007/BF01908588.Google Scholar
  70. Monteiro, V., Peixoto, F., Mata, L., & Sanches, C. (2017). Mathematics: I don’t like it! I like it! Very much, a little, not at all … social support and emotions in students from 2nd and 3rd cycles of education. Analise Psicologica, 35(3), 281–296.  https://doi.org/10.14417/ap.1156.Google Scholar
  71. Muthén, B., & Muthén, L. K. (2000). Integrating person-centered and variable-centered analyses: growth mixture modeling with latent trajectory classes. Alcoholism: Clinical and Experimental Research, 24(6), 882–891.  https://doi.org/10.1111/j.1530-0277.2000.tb02070.x.Google Scholar
  72. Napoli, M., Krech, P. R., & Holley, L. C. (2005). Mindfulness training for elementary school students. Journal of Applied School Psychology, 21(1), 99–125.  https://doi.org/10.1300/J370v21n01_05.Google Scholar
  73. Nardi, E., & Steward, S. (2003). Is mathematics T.I.R.E.D? A profile of quiet disaffection in the secondary mathematics classroom. British Educational Research Journal, 29(3), 345–367.  https://doi.org/10.1080/01411920301852.Google Scholar
  74. Nolen-Hoeksema, S. (2000). The role of rumination in depressive disorders and mixed anxiety/depressive symptoms. Journal of Abnormal Psychology, 109(3), 504–511.  https://doi.org/10.1037/0021-843X.109.3.504.Google Scholar
  75. Nolen-Hoeksema, S., Wisco, B. E., & Lyubomirsky, S. (2008). Rethinking rumination. Perspectives on Psychological Science, 3(5), 400–424.  https://doi.org/10.1111/j.1745-6924.2008.00088.x.Google Scholar
  76. Pajares, F., & Graham, L. (1999). Self-efficacy, motivation constructs, and mathematics performance of entering middle school students. Contemporary Educational Psychology, 24(2), 124–139.  https://doi.org/10.1006/ceps.1998.0991.Google Scholar
  77. Pallascio, R., & Lafortune, L. (2000). Pour une pensée réflexive en éducation [For reflective thinking in education]. Québec: Presses de l’Université du Québec.Google Scholar
  78. Peixoto, F., Sanches, C., Mata, L., & Monteiro, V. (2017). “How do you feel about math?”: relationships between competence and value appraisals, achievement emotions and academic achievement. European Journal of Psychology of Education, 32(3), 385–405.  https://doi.org/10.1007/s10212-016-0299-4.Google Scholar
  79. Pekrun, R. (2006). The control-value theory of achievement emotions: assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18(4), 315–341.  https://doi.org/10.1007/s10648-006-9029-9.Google Scholar
  80. Pekrun, R. (2007). Emotions in students’ scholastic development. In R. Pekrun, R. Perry, & S. Smart (Eds.), The scholarship of teaching and learning in higher education: an evidence-based perspective (pp. 553–610). Hollande: Springer.Google Scholar
  81. Pekrun, R., & Perry, R. (2014). Control-value theory of achievement emotions. In R. Pekrun & L. Linnenbrink-Garcia (Eds.), International handbook of emotion in education (pp. 120–141). New York: Routledge.Google Scholar
  82. Pekrun, R., & Stephens, E. J. (2010). Achievement emotions: a control-value approach. Social and Personality Compass, 4(4), 238–255.  https://doi.org/10.1111/j.1751-9004.2010.00259.x.Google Scholar
  83. Pekrun, R., Elliot, A. J., & Maier, M. A. (2009). Achievement goals and achievement emotions: testing a model of their joint relations with academic performance. Journal of Educational Psychology, 101(1), 115–135.  https://doi.org/10.1037/a0013383.Google Scholar
  84. Pekrun, R., Lichtenfeld, S., Marsh, H. W., Murayama, K., & Goetz, T. (2017). Achievement emotions and academic performance: longitudinal models of reciprocal effects. Child Development, 88(5), 1653–1670.  https://doi.org/10.1111/cdev.12704.Google Scholar
  85. Phinney, J. S., Dennis, J. M., & Gutierrez, D. M. (2005). College orientation profiles of Latino students from low socio-economic backgrounds: a cluster analytic approach. Hispanic Journal of Behavioral Science, 27(4), 387–408.  https://doi.org/10.1177/0739986305280692.Google Scholar
  86. Pomerantz, E. M., Altermatt, E. R., & Saxon, J. L. (2002). Making the grade but feeling distressed: gender differences in academic performance and internal distress. Journal of Educational Psychology, 94(2), 396–404.  https://doi.org/10.1037//0022-0663.94.2.396.Google Scholar
  87. Rusting, C. L., & Nolen-Hoeksema, S. (1998). Regulating responses to anger: effects of rumination and distraction on angry mood. Journal of Personality and Social Psychology, 74(3), 790–803.  https://doi.org/10.1037/0022-3514.74.3.790.Google Scholar
  88. Schmidt, S., Tinti, C., Levine, L. J., & Testa, S. (2010). Appraisals, emotions and emotion regulation: an integrative approach. Motivation and Emotion, 34(1), 63–72.  https://doi.org/10.1007/s11031-010-9155-z.Google Scholar
  89. Schukajlow, S., Leiss, D., Pekrun, R., Blum, W., Müller, M., & Messner, R. (2012). Teaching methods for modelling problems and students’ task-specific enjoyment, value, interest and self-efficacy expectations. Educational Studies in Mathematics, 79(2), 215–237.  https://doi.org/10.1007/s10649-011-9341-2.Google Scholar
  90. Schunk, D. H. (2003). Self-efficacy for reading and writing: influence of modeling, goal setting, and self-evaluation. Reading & Writing Quarterly, 19(2), 159–172.  https://doi.org/10.1080/10573560308219.Google Scholar
  91. Seaton, M., Parker, P., Marsh, H. W., Craven, R. G., & Yeung, A. S. (2014). The reciprocal relations between self-concept, motivation and achievement: juxtaposing academic self-concept and achievement goal orientations for mathematics success. Educational Psychology, 34(1), 49–72.  https://doi.org/10.1080/01443410.2013.825232.Google Scholar
  92. Segool, N. K., Carlson, J. S., Goforth, A. N., von der Embse, N., & Barterian, J. A. (2013). Heightened test anxiety among young children: elementary school students’ anxious responses to high-stakes testing. Psychology in the Schools, 50(5), 489–499.  https://doi.org/10.1002/pits.21689.Google Scholar
  93. Sorić, I., Penezić, Z., & Burić, I. (2013). Big five personality traits, cognitive appraisals and emotion regulation strategies as predictors of achievement emotions. Psihologijske teme, 22(2), 325–349.Google Scholar
  94. Stipek, D. J., & Gralinski, J. H. (1991). Gender differences in children’s achievement-related beliefs and emotional responses to success and failure in mathematics. Journal of Educational Psychology, 83(3), 361–371.  https://doi.org/10.1037/0022-0663.83.3.361.Google Scholar
  95. Thomsen, D. K. (2006). The association between rumination and negative affect: a review. Cognition and Emotion, 20(8), 1216–1235.  https://doi.org/10.1080/02699930500473533.Google Scholar
  96. Tibshirani, R., & Walther, G. (2005). Cluster validation by prediction strength. Journal of Computational and Graphical Statistics, 14(3), 511–528.  https://doi.org/10.1198/106186005X59243.Google Scholar
  97. Tzohar-Rozen, M., & Kramarski, B. (2017). Meta-cognition and meta-affect in young students: does it make a difference on mathematical problem solving? Teachers College Record, 119(13).Google Scholar
  98. Valentine, J. C., DuBois, D. L., & Cooper, H. (2004). The relation between self-beliefs and academic achievement: a meta-analytic review. Educational Psychologist, 39(2), 111–133.  https://doi.org/10.1207/s15326985ep3902_3.Google Scholar
  99. Valiente, C., Swanson, J., & Eisenberg, N. (2012). Linking students’ emotions and academic achievement: when and why emotions matter. Child Development Perspectives, 6(2), 129–135.  https://doi.org/10.1111/j.1750-8606.2011.00192.x.Google Scholar
  100. Viguer, P., Cantero, M. J., & Bañuls, R. (2017). Enhancing emotional intelligence at school: evaluation of the effectiveness of a two-year intervention program in Spanish pre-adolescents. Personality and Individual Differences, 113, 193–200.  https://doi.org/10.1016/j.paid.2017.03.036.Google Scholar
  101. Wigfield, A., & Meece, J. L. (1988). Math anxiety in elementary and secondary school students. Journal of Educational Psychology, 80(2), 210–216.Google Scholar
  102. Wu, S. S., Barth, M., Amin, H., Malcarne, V., & Menin, V. (2012). Math anxiety in second and third graders and its relation to mathematics achievement. Frontiers in Psychology, 3(162), 1–11.  https://doi.org/10.3389/fpsyg.2012.00162.Google Scholar

Copyright information

© Instituto Superior de Psicologia Aplicada, Lisboa and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Research Institute of Psychological Sciences, Faculty of Psychology and EducationUniversité Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations