Advertisement

European Journal of Psychology of Education

, Volume 31, Issue 2, pp 117–134 | Cite as

Children’s use of number line estimation strategies

  • Dominique PeetersEmail author
  • Tine Degrande
  • Mirjam Ebersbach
  • Lieven Verschaffel
  • Koen Luwel
Article

Abstract

This study tested whether second graders use benchmark-based strategies when solving a number line estimation (NLE) task. Participants were assigned to one of three conditions based on the availability of benchmarks provided on the number line. In the bounded condition, number lines were only bounded at both sides by 0 and 200, while the midpoint condition included an additional benchmark at the midpoint and children in the quartile condition were provided with a benchmark at every quartile. First, the inclusion of a midpoint resulted in more accurate estimates around the middle of the number line in the midpoint condition compared to the bounded and, surprisingly, also the quartile condition. Furthermore, the two additional benchmarks in the quartile condition did not yield better estimations around the first and third quartile, because children frequently relied on an erroneous representation of these benchmarks, leading to systematic estimation errors. Second, verbal strategy reports revealed that children in the midpoint condition relied more frequently on the benchmark at the midpoint of the number line compared to the bounded condition, confirming the accuracy data. Finally, the frequency of use of benchmark-based strategies correlated positively with mathematics achievement and tended to correlate positively also with estimation accuracy. In sum, this study is one of the first to provide systematic evidence for children’s use of benchmark-based estimation strategies in NLE with natural numbers and its relationship with children’s NLE performance.

Keywords

Number line estimation Benchmarks Estimation strategies 

Notes

Acknowledgments

The conduct of this study was supported by grant GOA 2012/010 of the Research Fund KU Leuven, Belgium, and by grant DFG: EB462/1-1 of the German Research Foundation to the fourth author.

References

  1. Ancker, J. S., & Kaufman, D. (2007). Rethinking health numeracy: a multidisciplinary literature review. Journal of the American Medical Informatics Association, 14, 713–721.CrossRefGoogle Scholar
  2. Ashcraft, M. H., & Moore, A. M. (2012). Cognitive processes of numerical estimation in children. Journal of Experimental Child Psychology, 111, 246–267.CrossRefGoogle Scholar
  3. Barth, H. C., & Paladino, A. M. (2011). The development of numerical estimation: evidence against a representational shift. Developmental Science, 14, 125–135.CrossRefGoogle Scholar
  4. Barth, H. C., Baron, A., Spelke, E., & Carey, S. (2009). Children’s multiplicative transformations of discrete and continuous quantities. Journal of Experimental Child Psychology, 103, 441–454.CrossRefGoogle Scholar
  5. Berteletti, I., Lucangeli, D., Piazza, M., Dehaene, S., & Zorzi, M. (2010). Numerical estimation in preschoolers. Developmental Psychology, 46, 545–551.CrossRefGoogle Scholar
  6. Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 41, 189–201.CrossRefGoogle Scholar
  7. Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79, 1016–1031.CrossRefGoogle Scholar
  8. Boyer, T. W., Levine, S. C., & Huttenlocher, J. (2008). Development of proportional reasoning: where young children go wrong. Developmental Psychology, 44, 1478–1490.CrossRefGoogle Scholar
  9. Bugden, S., & Ansari, D. (2011). Individual differences in children’s mathematical competence are related to the intentional but not automatic processing of Arabic numerals. Cognition, 118, 32–44.CrossRefGoogle Scholar
  10. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: a practical information-theoretic approach (2nd ed.). New York: Springer.Google Scholar
  11. De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103, 469–479.CrossRefGoogle Scholar
  12. Dehaene, S. (1997). The number sense. Oxford: Oxford University Press.Google Scholar
  13. Dudal, P. (2000). Leerlingvolgsysteem: Wiskunde—Toetsen 1-2-3. Basisboek [Student monitoring system: Mathematics—tests 1–2–3 manual]. Leuven: Garant.Google Scholar
  14. Ebersbach, M., Luwel, K., Frick, A., Onghena, P., & Verschaffel, L. (2008). The relationship between the shape of the mental number line and familiarity with numbers in 5- to 9-year old children: evidence for a segmented linear model. Journal of Experimental Child Psychology, 99, 1–17.CrossRefGoogle Scholar
  15. Ebersbach, M., Luwel, K., & Verschaffel, L. (2013). Comparing apples and pears in studies on magnitude estimates. Frontiers in Cognitive Science, 4, 1–6.Google Scholar
  16. Finnie, R., & Meng, R. (2001). Cognitive skills and the youth labour market. Applied Economics Letters, 8, 675–679.CrossRefGoogle Scholar
  17. Gandini, D., Lemaire, P., & Dufau, S. (2008). Older and young adults’ strategies in approximative quantification. Acta Psychologica, 129, 175–189.CrossRefGoogle Scholar
  18. Gandini, D., Ardiale, E., & Lemaire, P. (2010). Children’ strategies in approximate quantification. Current Psychology Letters: Behaviour, Brain, & Cognition, 26, 1–14.Google Scholar
  19. Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115, 394–406.CrossRefGoogle Scholar
  20. Hollands, J. G., & Dyre, B. (2000). Bias in proportion judgments: the cyclical power model. Psychological Review, 107, 500–524.CrossRefGoogle Scholar
  21. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174.CrossRefGoogle Scholar
  22. Link, T., Huber, S., Nuerk, H.-C., & Moeller, K. (2014). Unbounding the mental number line—new evidence on children’s spatial representation of numbers. Frontiers in Psychology, 4, 1–12.CrossRefGoogle Scholar
  23. Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H.-C. (2009). Children’s early mental number line: logarithmic or decomposed linear? Journal of Experimental Child Psychology, 103, 503–515.CrossRefGoogle Scholar
  24. Newman, R. S., & Berger, C. F. (1984). Children’s numerical estimation: flexibility in the use of counting. Journal of Educational Psychology, 76, 55–64.CrossRefGoogle Scholar
  25. Petitto, A. L. (1990). Development of number line and measurement concepts. Cognition and Instruction, 7, 55–78.CrossRefGoogle Scholar
  26. Ramani, G. B., Siegler, R. S., & Hitti, A. (2012). Taking it to the classroom: number board games as a small group learning activity. Journal of Educational Psychology, 104, 661–672.CrossRefGoogle Scholar
  27. Russo, J. E., Johnson, E. J., & Stephens, D. L. (1989). The validity of verbal protocols. Memory and Cognition, 17, 759–769.CrossRefGoogle Scholar
  28. Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2012). Association between basic numerical abilities and mathematics achievement. British Journal of Developmental Psychology, 30, 344–357.CrossRefGoogle Scholar
  29. Schneider, M., Grabner, R. H., & Paetsch, J. (2009). Mental number line, number line estimation, and mathematical school achievement: their interrelations in grades 5 and 6. Journal of Educational Psychology, 101, 359–372.CrossRefGoogle Scholar
  30. Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428–444.CrossRefGoogle Scholar
  31. Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: evidence for multiple representations of numerical quantity. Psychological Science, 14, 237–243.CrossRefGoogle Scholar
  32. Siegler, R. S., & Stern, E. (1998). Conscious and unconscious strategy discoveries: a microgenetic analysis. Journal of Experimental Psychology: General, 127, 377–397.CrossRefGoogle Scholar
  33. Siegler, R. S., & Thompson, C. A. (2014). Numerical landmarks are useful—except when they’re not. Journal of Experimental Child Psychology, 120, 39–58.CrossRefGoogle Scholar
  34. Siegler, R. S., Thompson, C. A., & Opfer, J. E. (2009). The logarithmic-to-linear shift: one learning sequence, many tasks, many time scales. Mind, Brain, and Education, 3, 143–150.CrossRefGoogle Scholar
  35. Slusser, E. B., Santiago, R. T., & Barth, H. C. (2013). Developmental change in numerical estimation. Journal of Experimental Psychology: General, 142, 193–208.CrossRefGoogle Scholar
  36. Thompson, C. A., & Opfer, J. E. (2010). How 15 hundred is like 15 cherries: effect of progressive alignment on representational changes in numerical cognition. Child Development, 81, 1768–1786.CrossRefGoogle Scholar
  37. Torbeyns, J., De Smedt, B., Ghesquière, P., & Verschaffel, L. (2009). Acquisition and use of shortcut strategies by traditionally schooled children. Educational Studies in Mathematics, 71, 1–17.CrossRefGoogle Scholar
  38. Vermeulen, J. A., Scheltens, F., & Eggen, T. J. H. M., (2015). Strategie-identificatie met de lege getallenlijn: Een vergelijking tussen tablet en papier [Strategy identification on the empty number line: a comparison between tablets and paper]. Pedagogische Studiën, 92, 39--54.Google Scholar
  39. White, S. L. J., & Szucs, D. (2012). Representational change and strategy use in children’s number line estimation during the first years of primary school. Behavioral and Brain Functions, 8, 1–12.CrossRefGoogle Scholar
  40. Whyte, J. C., & Bull, R. (2008). Number games, magnitude representation, and basic number skills in preschoolers. Developmental Psychology, 44, 588–596.CrossRefGoogle Scholar

Copyright information

© Instituto Superior de Psicologia Aplicada, Lisboa, Portugal and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Centre for Instructional Psychology and TechnologyKU LeuvenLeuvenBelgium
  2. 2.Institut für PsychologieUniversität KasselKasselGermany
  3. 3.Centre for Educational Research and DevelopmentKU Leuven—Campus BrusselsBrusselsBelgium

Personalised recommendations