European Journal of Psychology of Education

, Volume 30, Issue 3, pp 349–367 | Cite as

Cognitive functioning in children with learning problems

  • Christina Schwenck
  • Friederike Dummert
  • Darius Endlich
  • Wolfgang Schneider


Several cognitive deficits associated with reading and mathematics problems have been identified. However, only few studies assessed the impact of these variables in children with combined problems in reading and arithmetics, and none of these studies included children with low IQ. This longitudinal study was designed to assess the impact of different cognitive variables as well as socioeconomic status on literacy and mathematics development of elementary school children with different kinds of learning problems and IQ levels over the course of 2 years. A total of six subgroups was selected from a total sample of 929 second-grade children, with the subgroups differing according to their IQ level and the type of learning disorder. The subgroups consisted of initially 24 reading disabled, 22 mathematics disabled, 35 combined, and 29 low- and 28 overachieving children, as well as 28 typically developing children. Participants were repeatedly assessed in regard to their literacy, mathematics, IQ as well as specific and general cognitive variables. Overall, reading problems were linked to deficits in phonological awareness, while mathematics problems were linked to memory and attention deficits. Children with combined problems showed additive deficits in phonological awareness and attention. The same applied for low-achieving children who were additionally characterized by low socioeconomic status. Good phonological awareness served as a protective factor in overachieving children. The correlation of cognitive variables and group membership was more pronounced at the end of elementary school than in grade 2. Our results confirm an additive approach of cognitive deficits in children with combined learning problems. Phonological awareness constitutes not only a risk factor for learning problems but also a protective factor for good academic achievement in children with low IQ.


Reading problems Mathematics problems Learning disabilities Overachiever 



This research was supported by a grant from the German Research Foundation (DFG; GZ SCHN 315/39-1) to Wolfgang Schneider and Christina Schwenck. We are grateful to Marcus Hasselhorn and Karin Landerl for their valuable suggestions concerning the design of this research project.


  1. Ashkenazi, S., Black, J. M., Abrams, D. A., Hoeft, F., & Menon, V. (2013). Neurobiological underpinnings of math and reading learning disabilities. Journal of Learning Disabilities, 46(6), 549–569. doi: 10.1177/0022219413483174.CrossRefGoogle Scholar
  2. Badian, N. A. (1983). Dyscalculia and nonverbal disorders of learning. In H. R. Myklebust (Ed.), Progress in learning disabilities (Vol. 5, pp. 235–264). New York: Stratton.Google Scholar
  3. Badian, N. A. (1999). Reading disability defined as a discrepancy between listening and reading comprehension: a longitudinal study of stability, gender differences, and prevalence. Journal of Learning Disabilities, 32(2), 138–148. doi: 10.1177/002221949903200204.CrossRefGoogle Scholar
  4. Branum-Martin, L., Fletcher, J. M., & Stuebing, K. K. (2012). Classification and identification of reading and math disabilities: the special case of comorbidity. Journal of Learning Disabilities. doi: 10.1177/0022219412468767.Google Scholar
  5. Brown Waesche, J. S., Schatschneider, C., Maner, J. K., Ahmed, Y., & Wagner, R. K. (2011). Examining agreement and longitudinal stability among traditional and RTI-based definitions of reading disability using the affected-status agreement statistic. Journal of Learning Disabilities, 44(3), 296–307. doi: 10.1177/0022219410392048.CrossRefGoogle Scholar
  6. Cirino, P. T., Fletcher, J. M., Ewing Cobbs, L., Barnes, M. A., & Fuchs, L. S. (2007). Cognitive arithmetic differences in learning difficulty groups and the role of behavioral inattention. Learning Disabilities Research & Practice, 22(1), 25–35.CrossRefGoogle Scholar
  7. De Smedt, B., Holloway, I. D., & Ansari, D. (2011). Effects of problem size and arithmetic operation on brain activation during calculation in children with varying levels of arithmetical fluency. NeuroImage, 57(3), 771–781. doi: 10.1016/j.neuroimage.2010.12.037.CrossRefGoogle Scholar
  8. Döpfner, M., Görtz-Dorten, A., Lehmkuhl, G., Breuer, D., & Goletz, H. (2008). Diagnostik-System für psychische Störungen nach ICD-10 und DSM-IV für Kinder und Jugendliche-II (DISYPS-II). Bern: Huber.Google Scholar
  9. Ganzeboom, H. B. G., De Graaf, P. M., & Treiman, D. J. (1992). A standard international socioeconomic index of occupational status. Social Science Research, 21(1), 1–56.CrossRefGoogle Scholar
  10. Gathercole, S. E., Alloway, T. P., Willis, C., & Adams, A.-M. (2006). Working memory in children with reading disabilities. Journal of Experimental Child Psychology, 93(3), 265–281. doi: 10.1016/j.jecp.2005.08.003.CrossRefGoogle Scholar
  11. Geary, D. C., Hamson, C. O., & Hoard, M. K. (2000). Numerical and arithmetical cognition: a longitudinal study of process and concept deficits in children with learning disability. Journal of Experimental Child Psychology, 77(3), 236–263. doi: 10.1006/jecp.2000.2561.CrossRefGoogle Scholar
  12. Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78(4), 1343–1359.CrossRefGoogle Scholar
  13. Haffner, J., Baro, K., & Parzer, P. (2005). Heidelberger Rechentest (HRT 1-4). Erfassung mathematischer Basiskompetenzen im Grundschulalter. Göttingen: Hogrefe.Google Scholar
  14. Hasselhorn, M., Schumann-Hengsteler, R., Gronauer, J., Grube, D., Mähler, C., Schmid, I., et al. (2012). Arbeitsgedächtnisbatterie für Kinder von 5 bis 12 Jahren (AGTB 5-12). Göttingen: Hogrefe.Google Scholar
  15. Jordon, N. C., Kaplan, D., & Hanich, L. B. (2002). Achievement growth in children with learning difficulties in mathematics: findings of a two-year longitudinal study. Journal of Educational Psychology, 94(3), 586–597. doi: 10.1037//0022-0663.94.3.586.CrossRefGoogle Scholar
  16. Krajewski, K., & Schneider, W. (2009). Early development of quantity to number-word linkage as a precursor of mathematical school achievement and mathematical difficulties: findings from a four-year longitudinal study. Learning and Instruction, 19(6), 513–526. doi: 10.1016/j.learninstruc.2008.10.002.CrossRefGoogle Scholar
  17. Küspert, P., & Schneider, W. (1998). Würzburger Leise Leseprobe (WLLP). Ein Gruppenlesetest für die Grundschule. Göttingen: Hogrefe.Google Scholar
  18. Landerl, K., & Moll, K. (2010). Comorbidity of learning disorders: prevalence and familial transmission. Journal of Child Psychology and Psychiatry, 51(3), 287–294. doi: 10.1111/j.1469-7610.2009.02164.x.CrossRefGoogle Scholar
  19. Landerl, K., Fussenegger, B., Moll, K., & Willburger, E. (2009). Dyslexia and dyscalculia: two learning disorders with different cognitive profiles. Journal of Experimental Child Psychology, 103(3), 309–324. doi: 10.1016/j.jecp.2009.03.006.CrossRefGoogle Scholar
  20. Mabbott, D. J., & Bisanz, J. (2008). Computational skills, working memory, and conceptual knowledge in older children with mathematics learning disabilities. Journal of Learning Disabilities, 41(1), 15–28. doi: 10.1177/0022219407311003.CrossRefGoogle Scholar
  21. Miles, T. R., & Miles, E. (1992). Dyslexia and mathematics. New York: Guilford.Google Scholar
  22. Passolunghi, M. C., & Mammarella, I. C. (2012). Selective spatial working memory impairment in a group of children with mathematics learning disabilities and poor problem-solving skills. Journal of Learning Disabilities. doi: 10.1177/0022219411400746.Google Scholar
  23. Pennington, B. F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101(2), 385–413. doi: 10.1016/j.cognition.2006.04.008.CrossRefGoogle Scholar
  24. Preßler, A.-L., Könen, T., Hasselhorn, M., & Krajewski, K. (2014). Cognitive preconditions of early reading and spelling: a latent-variable approach with longitudinal data. Reading and Writing, 27(2), 383–406. doi: 10.1007/s11145-013-9449-0.CrossRefGoogle Scholar
  25. Purvis, K. L., & Tannock, R. (2000). Phonological processing, not inhibitory control, differentiates ADHD. Jaac, 39(4), 485–494. doi: 10.1097/00004583-200004000-00018.Google Scholar
  26. Schneider, W., & Näslund, J. C. (1999). Impact of early phonological processing skills on reading and spelling in school: evidence from the Munich Longitudinal Study. In F. E. Weinert & W. Schneider (Eds.), Individual development from 3 two 12: Findings from the Munich Longitudinal Study (pp. 126–147). Cambridge: Cambridge University Press.Google Scholar
  27. Silver, C. H., Deborah-Lynne Pennett, H., Black, J. L., Fair, G. W., & Balise, R. R. (1999). Stability of arithmetic disability subtypes. Journal of Learning Disabilities, 32(2), 108–119. doi: 10.1177/002221949903200202.CrossRefGoogle Scholar
  28. Sinner, D., Ennemoser, M., & Krajewski, K. (2011). Entwicklungspsychologische Frühdiagnostik mathematischer Basiskompetenzen im Kindergarten- und frühen Grundschulalter (MBK-0 und MBK-1). In M. Hasselhorn & W. Schneider (Eds.), Frühprognose schulischer Kompetenzen (pp. 109–126). Göttingen: Hogrefe.Google Scholar
  29. Stock, C., & Schneider, W. (2008a). Deutscher Rechtschreibtest für das dritte und vierte Schuljahr (DERET 3-4+). Göttingen: Hogrefe.Google Scholar
  30. Stock, C., & Schneider, W. (2008b). Deutscher Rechtschreibtest für das erste und zweite Schuljahr (DERET 1-2+). Göttingen: Hogrefe.Google Scholar
  31. Stock, C., Marx, P., & Schneider, W. (2003). Basiskompetenzen für Lese-Rechtschreibleistungen (BAKO 1-4). Göttingen: Hogrefe.Google Scholar
  32. Szucs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2013). Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex, 49(10), 2674–2688. doi: 10.1016/j.cortex.2013.06.007.CrossRefGoogle Scholar
  33. van der Sluis, S., de Jong, P. F., & Leij, A. V. D. (2004). Inhibition and shifting in children with learning deficits in arithmetic and reading. Journal of Experimental Child Psychology, 87(3), 239–266. doi: 10.1016/j.jecp.2003.12.002.CrossRefGoogle Scholar
  34. Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M. (2004). Specific reading disability (dyslexia): what have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 45(1), 2–40.CrossRefGoogle Scholar
  35. Vukovic, R. K., Lesaux, N. K., & Siegel, L. S. (2010). The mathematics skills of children with reading difficulties. Learning and Individual Differences, 20(6), 639–643. doi: 10.1016/j.lindif.2010.08.004.CrossRefGoogle Scholar
  36. Weiß, R., & Osterland, J. (1997). Grundintelligenztest Skala 1. CFT 1. Handanweisung für die Durchführung, Auswertung und Interpretation (5th ed.). Braunschweig: Westermann.Google Scholar
  37. Willcutt, E., Sonuga-Barke, E., Nigg, J., & Sergeant, J. (2008). Recent developments in neuropsychological models of childhood psychiatric disorders. Advances in Biological Psychiatry, 24, 195–226.CrossRefGoogle Scholar
  38. Willcutt, E. G., Petrill, S. A., Wu, S., Boada, R., DeFries, J. C., Olson, R. K., & Pennington, B. F. (2013). Comorbidity between reading disability and math disability: concurrent psychopathology, functional impairment, and neuropsychological functioning. Journal of Learning Disabilities, 46(6), 500–516. doi: 10.1177/0022219413477476.CrossRefGoogle Scholar

Copyright information

© Instituto Superior de Psicologia Aplicada, Lisboa, Portugal and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Christina Schwenck
    • 1
  • Friederike Dummert
    • 2
  • Darius Endlich
    • 2
  • Wolfgang Schneider
    • 2
  1. 1.Department of PsychologyJustus-Liebig University GießenGießenGermany
  2. 2.Department of PsychologyUniversity of WürzburgWürzburgGermany

Personalised recommendations