European Journal of Psychology of Education

, Volume 29, Issue 4, pp 619–634 | Cite as

Learning to solve story problems—supporting transitions between reality and mathematics

  • Cornelia S. Große


Applying mathematics to real problems is increasingly emphasized in school education; however, it is often complained that many students are not able to solve mathematical problems embedded in contexts. In order to solve story problems, a transition from a textual description to a mathematical notation has to be found, intra-mathematical calculations have to be performed, and the results have to be interpreted with respect to the described situation. On the one hand, it is often suggested to consider problems which are embedded in a context from the very beginning; on the other hand, step-by-step procedures at the beginning of learning processes are widely proposed. In the present work, it was tested experimentally whether starting a learning process in a “pure” intra-mathematical way (thus, without a textual description of a context) is more beneficial than starting a learning process with problems providing a very short context or with problems providing a detailed context, both with respect to objective measures and with respect to subjective measures. The results indicate that starting with intra-mathematical problems and starting with detailed story problems can both be very effective; however, interaction effects with prior knowledge have to be taken into account. With respect to motivational aspects, the results indicate that intra-mathematical problems and focused story problems are substantially more appreciated by the learners than detailed story problems.


Mathematics learning Story problems Translation between reality and mathematics 



This work was supported by the Central Research Development Fund (CRDF) of the University of Bremen and by the German Research Foundation (DFG) under contract number GR2706/4-1. The author would like to thank these institutions for their support.


  1. Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological Review, 84, 191–215.CrossRefGoogle Scholar
  2. Bandura, A. (1993). Perceived self-efficacy in cognitive development and functioning. Educational Psychologist, 28, 117–148.CrossRefGoogle Scholar
  3. Bandura, A., & Locke, E. A. (2003). Negative self-efficacy and goal effects revisited. Journal of Applied Psychology, 88, 87–99. doi: 10.1037/0021-9010.88.1.87.CrossRefGoogle Scholar
  4. Bergqvist, E., & Österholm, M. (2010). A theoretical model of the connection between the process of reading and the process of solving mathematical tasks. In Mathematics and mathematics education: Cultural and social dimensions. Proceedings of MADIF 7 (pp. 47–57). Svensk förening för matematikdidaktisk forskning, SMDF.Google Scholar
  5. Blum, W. (1993). Mathematical modelling in mathematics education and instruction. In T. Breiteig, I. Huntley, & G. Kaiser-Messmer (Eds.), Teaching and learning mathematics in context (pp. 3–14). New York: E. Horwood.Google Scholar
  6. Blum, W. (2007). Mathematisches Modellieren – zu schwer für Schüler und Lehrer? [Mathematical Modeling – too difficult for students and teachers?] In Beiträge zum Mathematikunterricht (pp. 3–12). Hildesheim: Franzbecker.Google Scholar
  7. Blum, W., Neubrand, M., Ehmke, T., Senkbeil, M., Jordan, A., Ulfig, F., et al. (2004). Mathematische Kompetenz [Mathematical competence]. In PISA-Konsortium Deutschland (Ed.), Der Bildungsstand der Jugendlichen in Deutschland – Ergebnisse des zweiten internationalen Vergleichs (pp. 47–92). Münster: Waxmann.Google Scholar
  8. Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. The International Journal on Mathematics Education, 38, 86–95. doi: 10.1007/BF02655883.Google Scholar
  9. Borromeo Ferri, R. (2009). Zur Entwicklung des Verständnisses von Modellierung bei Studierenden [On the development of students’ understanding of modeling]. In M. Neubrand (Ed.), Beiträge zum Mathematikunterricht 2009 (pp. 139–142). Münster: WTM.Google Scholar
  10. Büchter, A., & Leuders, T. (2005). Mathematikaufgaben selbst entwickeln. Lernen fördern – Leistung überprüfen [Developing mathematical problems by oneself. Fostering learning – checking performance]. Berlin: Cornelsen Scriptor.Google Scholar
  11. Deci, E. L., & Ryan, R. M. (1993). Die Selbstbestimmungstheorie der Motivation und ihre Bedeutung für die Pädagogik [The self-determination theory of motivation and its importance for pedagogy]. Zeitschrift für Pädagogik, 39, 223–238.Google Scholar
  12. Fite, G. (2002). Reading and math: What is the connection? A short review of the literature. Kansas Science Teacher, 14, 7–11.Google Scholar
  13. Galbraith, P. L., & Clatworthy, N. J. (1990). Beyond standard models—meeting the challenge of modelling. Educational Studies in Mathematics, 21, 137–163.CrossRefGoogle Scholar
  14. Greer, B. (1997). Modelling reality in mathematics classrooms: the case of word problems. Learning and Instruction, 7, 293–307.CrossRefGoogle Scholar
  15. Jonassen, D. H. (2003). Designing research-based instruction for story problems. Educational Psychology Review, 15, 267–296.CrossRefGoogle Scholar
  16. Kaiser, G., & Maaß, K. (2007). Modelling in lower secondary mathematics classroom—problems and opportunities. In W. Blum, P. Galbraith, H.-W. Henn, & M. Niss (Eds.), Applications and modelling in mathematics education. The 14th ICMI study (pp. 99–108). New York: Springer.CrossRefGoogle Scholar
  17. Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychology Review, 19, 509–539. doi: 10.1007/s10648-007-9054-3.CrossRefGoogle Scholar
  18. Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38, 23–31. doi: 10.1207/S15326985EP3801_4.CrossRefGoogle Scholar
  19. Koedinger, K. R., & Nathan, M. J. (2004). The real story behind story problems: effects of representations on quantitative reasoning. The Journal of the Learning Sciences, 13, 129–164.CrossRefGoogle Scholar
  20. Leiss, D., Schukajlow, S., Blum, W., Messner, R., & Pekrun, R. (2010). The role of the situation model in mathematical modelling—task analyses, student competencies, and teacher interventions. Journal für Mathematik-Didaktik, 31, 119–141. doi: 10.1007/s13138-010-0006-y.CrossRefGoogle Scholar
  21. Maaß, K. (2006). What are modelling competencies? The International Journal on Mathematics Education, 38, 113–142.Google Scholar
  22. Mayer, R. E., & Hegarty, M. (1996). The process of understanding mathematical problems. In R. J. Sternberg & T. Ben-Zeev (Eds.), The nature of mathematical thinking (pp. 29–53). Mahwah: Lawrence Erlbaum.Google Scholar
  23. OECD. (2003). The PISA 2003 assessment framework—Mathematics, reading, science and problem solving knowledge and skills. Paris: OECD.Google Scholar
  24. Pollock, E., Chandler, P., & Sweller, J. (2002). Assimilating complex information. Learning and Instruction, 12, 61–86.CrossRefGoogle Scholar
  25. Prenzel, M., Drechsel, B., Kliewe, A., Kramer, K., & Röber, N. (2000). Lernmotivation in der Aus- und Weiterbildung: Merkmale und Bedingungen [Learning motivation in education and professional training: Features and preconditions]. In C. Harteis, H. Heid, & S. Kraft (Eds.), Kompendium Weiterbildung. Aspekte und Perspektiven betrieblicher Personal- und Organisationsentwicklung (pp. 163–173). Opladen: Leske + Budrich.Google Scholar
  26. Rakoczy, K., Klieme, E., & Pauli, C. (2008). Die Bedeutung der wahrgenommenen Unterstützung motivationsrelevanter Bedürfnisse und des Alltagsbezugs im Mathematikunterricht für die selbstbestimmte Motivation [The impact of the perceived support of basic psychological needs and of the perceived relevance of contents on students’ self-determined motivation in mathematics instruction]. Zeitschrift für Pädagogische Psychologie, 22, 25–35. doi: 10.1024/1010-0652.22.1.25.CrossRefGoogle Scholar
  27. Reinmann, G., & Mandl, H. (2006). Unterrichten und Lernumgebungen gestalten [Teaching and designing learning environments]. In A. Krapp & B. Weidenmann (Eds.), Pädagogische Psychologie (pp. 613–658). Weinheim: Beltz PVU.Google Scholar
  28. Reusser, K., & Stebler, R. (1997). Every word problem has a solution—the social rationality of mathematical modeling in schools. Learning and Instruction, 7, 309–327.CrossRefGoogle Scholar
  29. Rheinberg, F., Vollmeyer, R., & Burns, B. D. (2001). FAM: Ein Fragebogen zur Erfassung aktueller Motivation in Lern- und Leistungssituationen [FAM: A questionnaire to determine current motivation in learning and performance situations]. Diagnostica, 47, 57–66.CrossRefGoogle Scholar
  30. Schukajlow, S., & Blum, W. (2011). Zum Einfluss der Klassengröße auf Modellierungskompetenz, Selbst- und Unterrichtswahrnehmungen von Schülern in selbständigkeitsorientierten Lehr-Lernformen [On the effect of class size on modeling competency and self-reported perceptions of students in self-regulated learning environments]. Journal für Mathematik-Didaktik, 32, 133–151. doi: 10.1007/s13138-011-0025-3.CrossRefGoogle Scholar
  31. Van Merriënboer, J. J. G., Clark, R. E., & de Croock, M. B. M. (2002). Blueprints for complex learning: the 4C/ID*-model. Educational Technology Research and Development, 50, 39–64.CrossRefGoogle Scholar
  32. Verschaffel, L., De Corte, E., & Lasure, S. (1994). Realistic considerations in mathematical modeling of school arithmetic word problems. Learning and Instruction, 4, 273–294.CrossRefGoogle Scholar
  33. Verschaffel, L., De Corte, E., & Vierstraete, H. (1999). Upper elementary school pupils’ difficulties in modeling and solving nonstandard additive word problems involving ordinal numbers. Journal for Research in Mathematics Education, 30, 265–285.CrossRefGoogle Scholar
  34. Vilenius-Tuohimaa, P. M., Aunola, K., & Nurmi, J. E. (2008). The association between mathematical word problems and reading comprehension. Educational Psychology, 28, 409–426. doi: 10.1080/01443410701708228.CrossRefGoogle Scholar
  35. Visser, J., & Keller, J. M. (1990). The clinical use of motivational messages: an inquiry into the validity of the ARCS model of motivational design. Instructional Science, 19, 467–500.CrossRefGoogle Scholar
  36. Zöttl, L., Ufer, S., & Reiss, K. (2010). Modelling with heuristic worked examples in the KOMMA learning environment. Journal für Mathematik-Didaktik, 31, 143–165. doi: 10.1007/s13138-010-0008-9.CrossRefGoogle Scholar

Copyright information

© Instituto Superior de Psicologia Aplicada, Lisboa, Portugal and Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Group of Computer Architecture, Institute of Computer ScienceUniversity of BremenBremenGermany

Personalised recommendations