European Journal of Psychology of Education

, Volume 29, Issue 3, pp 327–345 | Cite as

Casting the die before the die is cast: the importance of the home numeracy environment for preschool children



Mathematical competencies are important not only for academic achievement at school but also for professional success later in life. Although we know a lot about the impact of “Home Literacy Environment” on the development of early linguistic competencies, research on “Home Numeracy Environment” (HNE) and the assessment of its influence on the development of mathematical abilities is in its infancy. We still lack studies analysing this relationship and simultaneously controlling for other variables concerning the individual and the environment. Thus, in this article, we focussed on the development of mathematical competencies in a sample of 609 German children from the end of kindergarten until the end of Grade 1. In particular, we were interested in the role HNE plays in regard to this development while controlling for age, sex, intelligence, rapid naming, number span, linguistic competencies, kindergarten attendance and socioeconomic status. Moreover, HNE was compared between families with or without a history of mathematical disability. HNE was not only an important predictor of mathematical abilities at the end of kindergarten, but it also influenced the further development of mathematical competencies above and beyond its initial impact. Families with a history of dyscalculia provided a more unfavourable HNE than families with no such problems. Results are shown in a structural equation model, which highlights the importance of HNE. The findings indicate that those involved in policy and intervention should focus more on the learning environments in families to improve children's achievement.


Home Numeracy Environment (HNE) Mathematical competencies Dice games Academic achievement Kindergarten and school children 


  1. Ackerman, P. L., & Lohman, D. F. (2006). Individual differences in cognitive function. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 139–161). New York: Routledge.Google Scholar
  2. Aikens, N. L., & Barbarin, O. (2008). Socioeconomic differences in reading trajectories: The contribution of family, neighborhood, and school contexts. Journal of Educational Psychology, 100(2), 235–251.CrossRefGoogle Scholar
  3. Blevins-Knabe, B., & Musun-Miller, L. (1996). Number use at home by children and their parents and its relationship to early mathematical performance. Early Development and Parenting, 5(1), 35–45.CrossRefGoogle Scholar
  4. Blevins-Knabe, B., Berghout Austin, A., Musun, L., Eddy, A., & Jones, R. M. (2000). Family home care providers' and parents' beliefs and practices concerning mathematics with young children. Early Child Development and Care, 165(1), 41–58.CrossRefGoogle Scholar
  5. Bonson, M., Lintorf, K., & Bos, W. (2008). Kompetenzen von Jungen und Mädchen [competencies of boys and girls]. In W. Bos, M. Bonsen, J. Baumert, M. Prenzel, C. Selter, & G. Walther (Eds.), TIMSS 2007. Mathematische und naturwissenschaftliche Kompetenzen von Grundschulkindern in Deutschland im internationalen Vergleich (pp. 125–140). Münster: Waxmann.Google Scholar
  6. Bradley, L., & Bryant, P. E. (1985). Rhyme and reason in reading and spelling. Ann Arbor: University of Michigan Press.Google Scholar
  7. Burgemeister, B., Blum, L., & Lorge, J. (1972). Columbia Mental Maturity Scale. New York: Harcourt Brace Jovanovich.Google Scholar
  8. Burgess, S. R. (2002). The influence of speech perception, oral language ability, the home literacy environment, and pre-reading knowledge on the growth of phonological sensitivity: A one-year longitudinal investigation. Reading and Writing, 15, 709–737.CrossRefGoogle Scholar
  9. Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46(1), 3–18.CrossRefGoogle Scholar
  10. Christian, K., Morrison, F. J., & Bryant, F. B. (1998). Predicting kindergarten academic skills: Interactions among child care, maternal education, and family literacy environments. Early Childhood Research Quarterly, 13(3), 501–521.CrossRefGoogle Scholar
  11. Claessens, A., Duncan, G., & Engel, M. (2009). Kindergarten skills and fifth-grade achievement: evidence from the ECLS-K. Economics of Education Review, 28(4), 415–427.CrossRefGoogle Scholar
  12. Davidse, N. J., de Jong, M. T., Bus, A. G., Huijbregts, S. C. J., & Swaab, H. (2011). Cognitive and environmental predictors of early literacy skills. Reading and Writing, 24, 395–412.CrossRefGoogle Scholar
  13. Dearing, E., Casey, B. M., Ganley, C. M., Tillinger, M., Laski, E., & Montecillo, C. (2012). Young girls' arithmetic and spatial skills: the distal and proximal roles of family socioeconomics and home learning experience. Early Childhood Research Quarterly, 27(3), 458–470.CrossRefGoogle Scholar
  14. Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., et al. (2007). School readiness and later achievement. Developmental Psychology, 43(6), 1428–1446.CrossRefGoogle Scholar
  15. Ehmke, T., Hohensee, F., Siegle, T., & Prenzel, M. (2006). Soziale Herkunft, elterliche Unterstützungsprozesse und Kompetenzentwicklung [Social origin, parental support processes, and the development of competenices]. In M. Prenzel, C. Artelt, J. Baumert, W. Blum, M. Hammann, E. Klieme, & R. Pekrun (Eds.), PISA 2003. Untersuchungen zur Kompetenzentwicklung im Verlauf eines Schuljahres (pp. 225–248). Münster: Waxmann.Google Scholar
  16. Enders, C. K. (2001). The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data. Psychological Methods, 6(4), 352–370.CrossRefGoogle Scholar
  17. Esser, G. (2002). BUEVA – Basisdiagnostik für umschriebene Entwicklungsstörungen im Vorschulalter [BUEVA – basic diagnostics for developmental disorders at preschool age]. Göttingen: Beltz.Google Scholar
  18. Geary, D. C. (2000). From infancy to adulthood: The development of numerical abilities. European Child & Adolescent Psychiatry, 9(2), II/11–II/16.CrossRefGoogle Scholar
  19. Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study. Developmental Psychology, 47(6), 1539–1552.CrossRefGoogle Scholar
  20. Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549–576.CrossRefGoogle Scholar
  21. Griffin, E. A., & Morrison, F. J. (1997). The unique contribution of Home Literacy Environment to differences in early literacy skills. Early Child Development and Care, 127, 233–243.CrossRefGoogle Scholar
  22. Gustafsson, J.-E., & Undheim, J. O. (1996). Individual differences in cognitive functions. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 186–242). New York: Macmillan.Google Scholar
  23. Hasselhorn, M., Schöler, H., Schneider, W., Ehm, J.-H., Johnson, M., Keppler, I., et al. (2012). Gezielte Zusatzförderung im Modellprojekt "Schulreifes Kind" – Auswirkungen auf Schulbereitschaft und schulischen Lernerfolg [Additional support in the model project „School readiness in children“ – effects on school readiness and academic success]. Frühe Bildung, 1(1), 3–10.CrossRefGoogle Scholar
  24. Hood, M., Conlon, E., & Andrews, G. (2008). Preschool home literacy practices and children's literacy development: a longitudinal analysis. Journal of Educational Psychology, 100(2), 252–271.CrossRefGoogle Scholar
  25. Huntsinger, C. S., Jose, P. E., Larson, S. L., Balsink Krieg, D., & Shaligram, C. (2000). Mathematics, vocabulary, and reading development in Chinese-American and European-American children over the primary school years. Journal of Educational Psychology, 92, 745–760.CrossRefGoogle Scholar
  26. Hyde, J. S., Else-Quest, N. M., Alibali, M. W., Knuth, E., & Romberg, T. (2006). Mathematics in the home: Homework practices and mother–child interactions doing mathematics. The Journal of Mathematical Behavior, 25, 136–152.CrossRefGoogle Scholar
  27. Jansen, H., Mannhaupt, G., Marx, H., & Skowronek, H. (2002). Bielefelder Screening zur Früherkennung von Lese-Rechtschreibschwierigkeiten (BISC) [Bielefelder screening for the early identification of difficulties in reading and writing (BISC)] (2nd ed.). Göttingen: Hogrefe.Google Scholar
  28. Kiese-Himmel, C. (2005). AWST-R – Aktiver Wortschatztest für 3- bis 5-jährige Kinder [AWST-R—active vocabulary test for 3- to 5-year-old children]. Göttingen: Hogrefe.Google Scholar
  29. Kleemans, T., Peeters, M., Segers, E., & Verhoeven, L. (2012). Child and home predictors of early numeracy skills in kindergarten. Early Childhood Research Quarterly, 27(3), 471–477.CrossRefGoogle Scholar
  30. Koponen, T., Aunola, K., Ahonen, T., & Nurmi, J.-E. (2007). Cognitive predictors of single digit band procedural calculation skills and their covariation with reading skill. Journal of Experimental Child Psychology, 97, 220–241.CrossRefGoogle Scholar
  31. Krajewski, K. (2005). Vorschulische Mengenbewusstheit von Zahlen und ihre Bedeutung für die Früherkennung von Rechenschwäche [Preschool awareness for quantities of numbers and its importance for the early identification of dyscalculia]. In M. Hasselhorn, H. Marx, & W. Schneider (Eds.), Diagnostik von Mathematikleistungen (pp. 49–70). Göttingen: Hogrefe.Google Scholar
  32. Krajewski, K., & Schneider, W. (2009). Early development of quantity to number-word linkage as a precursor of mathematical school achievement and mathematical difficulties: Findings from a four-year longitudinal study. Learning and Instruction, 19, 513–526.CrossRefGoogle Scholar
  33. Krajewski, K., Küspert, P., Schneider, W., & Visé, M. (2002). Deutscher Mathematiktest für erste Klassen (DEMAT 1+) [German mathematical test battery for Grade 1]. Göttingen: Hogrefe.Google Scholar
  34. Krajewski, K., Schneider, W., & Nieding, G. (2008). Zur Bedeutung von Arbeitsgedächtnis, Intelligenz, phonologischer Bewusstheit und früher Mengen-Zahlen-Kompetenz beim Übergang vom Kindergarten in die Grundschule [The significance of working memory, intelligence, phonological awareness and early quantity-number competencies during transition from kindergarten to primary school]. Psychologie in Erziehung und Unterricht, 55, 100–113.Google Scholar
  35. LeFevre, J.-A., Skwarchuk, S.-L., Smith-Chant, B. L., Fast, L., Kamawar, D., & Bisanz, J. (2009). Home numeracy experiences and children's math performance in the early school years. Canadian Journal of Behavioural Science, 41(2), 55–66.CrossRefGoogle Scholar
  36. LeFevre, J.-A., Polyzoi, E., Skwarchuk, S.-L., Fast, L., & Sowinski, C. (2010). Do home numeracy and literacy practices of Greek and Canadian parents predict the numeracy skills of kindergarten children? International Journal of Early Years Education, 18(1), 55–70.CrossRefGoogle Scholar
  37. Marsh, H. W., Trautwein, U., Lüdtke, O., Köller, O., & Baumert, J. (2005). Academic self-concept, interest, grades, and standardized test scores: Reciprocal effects models of causal ordering. Child Development, 76, 397–416.CrossRefGoogle Scholar
  38. Melhuish, E. C., Phan, M. B., Sylva, K., Sammons, P., Siraj-Blatchford, I., & Taggart, B. (2008). Effects of the home learning environment and preschool centre experience upon literacy and numeracy development in early primary school. Journal of Social Issues, 64, 95–114.CrossRefGoogle Scholar
  39. Möller, J., Streblow, L., & Pohlmann, B. (2009). Achievement and self-concept of students with learning disabilities. Social Psychology of Education, 12, 113–122.CrossRefGoogle Scholar
  40. Musun-Miller, L., & Blevins-Knabe, B. (1998). Adults' beliefs about children and mathematics: How important is it and how do children learn about it? Early Development and Parenting, 7, 191–202.CrossRefGoogle Scholar
  41. Niklas, F. (2011). Vorläuferfertigkeiten im Vorschulalter zur Vorhersage der Schulfähigkeit, späterer Rechenschwäche und Lese- und Rechtschreibschwäche. Diagnostik, Zusammenhänge und Entwicklung in Anbetracht der bevorstehenden Einschulung [Precursors of school readiness and for the prediction of later dyscalculia and dyslexia. Diagnosis, interrelations and development considering imminent school enrolment]. Hamburg: Dr. Kovač.Google Scholar
  42. Niklas, F., & Schneider, W. (2010). Der Zusammenhang von familiärer Lernumwelt mit schulrelevanten Kompetenzen im Vorschulalter [The interrelation of Home Literacy Environment and different measures of performance at preschool age]. Zeitschrift für Soziologie der Erziehung und Sozialisation, 30(2), 148–164.Google Scholar
  43. Niklas, F., & Schneider, W. (2012). Die Anfänge geschlechtsspezifischer Leistungsunterschiede in mathematischen und schriftsprachlichen Kompetenzen [The beginning of gender-based performance differences in mathematics and linguistic competencies]. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 44(3), 123–138.CrossRefGoogle Scholar
  44. Niklas, F., & Schneider, W. (2013). Home literacy environment and the beginning of reading and spelling. Contemporary Educational Psychology, 38, 40–50.CrossRefGoogle Scholar
  45. Paris, S. G., Morrison, F. J., & Miller, K. F. (2006). Academic pathways from preschool through elementary school. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 61–85). New York: Routledge.Google Scholar
  46. Passolunghi, M. C., Vercelloni, B., & Schadee, H. (2007). The precursors of mathematics learning: Working memory, phonological ability and numerical competence. Cognitive Development, 22, 165–184.CrossRefGoogle Scholar
  47. Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of Educational Research, 74(4), 525–556.CrossRefGoogle Scholar
  48. Ramani, G., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children's numerical knowledge through playing number board games. Child Development, 29, 375–394.CrossRefGoogle Scholar
  49. Rashid, F. L., Morris, R. D., & Sevcik, R. A. (2005). Relationship between Home Literacy Environment and reading achievement in children with reading disabilities. Journal of Learning Disabilities, 38(1), 2–11.CrossRefGoogle Scholar
  50. Resnick, L. B. (1989). Developing mathematical knowledge. American Psychologist, 44(2), 162–169.CrossRefGoogle Scholar
  51. Scarborough, H. S., & Dobrich, W. (1994). On the efficacy of reading to preschoolers. Developmental Review, 14, 245–302.CrossRefGoogle Scholar
  52. Schöler, H., & Brunner, M. (2008). HASE—Heidelberger Auditives Screening in der Einschulungsuntersuchung [HASE—Heidelberger auditive screening at school enrolment] (2nd ed.). Wertingen: Westra.Google Scholar
  53. Schöler, H., & Schäfer, P. (2004). HASE – Heidelberger auditives Screening in der Einschulungsuntersuchung. Itemanalysen und Normen. (Arbeitsberichte aus dem Forschungsprojekt „Differenzialdiagnostik“ Nr.17) [HASE – Heidelberger auditive screening at school enrolment. Itemanalysis and norms]. Heidelberg: Pädagogische Hochschule.Google Scholar
  54. Shalev, R. S., Auerbach, J., Manor, O., & Gross-Tsur, V. (2000). Developmental dyscalculia: Prevalence and prognosis. European Child & Adolescent Psychiatry, 9, II/58–II/64.CrossRefGoogle Scholar
  55. Skwarchuk, S.-L. (2009). How do parents support preschoolers' numeracy learning experiences at home? Early Childhood Education Journal, 37, 189–197.CrossRefGoogle Scholar
  56. Stern, E. (2009). Development of mathematical competencies: Source of individual differences and their developmental trajectories. In W. Schneider & M. Bullock (Eds.), Human development from early childhood to early adulthood. Findings from a 20 year longitudinal study (pp. 221–238). New York: Psychology Press.Google Scholar
  57. Swanson, H. L. (2006). Cognitive processes that underlie mathematical precociousness in young children. Journal of Experimental Child Psychology, 93, 239–264.CrossRefGoogle Scholar
  58. Sylva, K., Melhuish, E., Sammons, P., Siraj-Blatchford, I., & Taggart, B. (2008). Effective Pre-school and Primary Education 3-11 Project (EPPE 3-11): Final report from the primary phase: Pre-school, school and family influences on children's development during Key Stage 2 (age 7-11). London: University of London.Google Scholar
  59. Tymms, P., & Albone, S. (2002). Performance indicators in primary school. In A. J. Visscher & R. Coe (Eds.), School improvement through performance feedback (pp. 191–218). Lisse, NL: Swets & Zeitlinger.Google Scholar
  60. Vandermaas-Peeler, M., Ferretti, L., & Loving, S. (2012). Playing The Ladybug Game: Parent guidance of young children's numeracy activities. Early Child Development and Care, 182(10), 1289–1307.CrossRefGoogle Scholar
  61. Walston, J., & West, J. (2004). Full-day and half-day kindergarten in the United States: Findings from the Early Childhood Longitudinal Study, Kindergarten Class of 1998–99. Washington: US Government Printing Office.Google Scholar
  62. Wegener, B. (1988). Kritik des Prestiges [Criticism of the prestige]. Opladen: Westdeutscher Verlag.Google Scholar
  63. Weiber, R., & Mühlhaus, D. (2010). Strukturgleichungsmodellierung. Eine anwendungsorientierte Einführung in die Kausalanalyse mit Hilfe von AMOS, SmartPLS und SPSS [Structural equation modeling. An applied introduction into causal analysis with AMOS, SmartPLS, and SPSS]. Heidelberg: Springer.Google Scholar
  64. Willburger, E., Fussenegger, B., Moll, K., Wood, G., & Landerl, K. (2008). Naming speed in dyslexia and dyscalculia. Learning and Individual Differences, 18, 224–236.CrossRefGoogle Scholar
  65. Wynn, K. (1990). Children's understanding of counting. Cognition, 36, 155–193.CrossRefGoogle Scholar

Copyright information

© Instituto Superior de Psicologia Aplicada, Lisboa, Portugal and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of WürzburgWürzburgGermany
  2. 2.Department of Educational and Developmental PsychologyUniversity of WürzburgWürzburgGermany

Personalised recommendations