European Journal of Psychology of Education

, Volume 26, Issue 1, pp 129–141 | Cite as

Age-related differences on cognitive overload in an audio-visual memory task



The present study aimed to provide evidence outlining whether the type of stimuli used in teaching would provoke differing levels of recall across three different academic age groups. One hundred and twenty-one participants, aged 11–25 years, were given a language-based memory task in the form of a wordlist consisting of 15 concrete and 15 abstract words, presented either visually, acoustically, or a combination of both audio and visual presentation. The study found that the presence of cognitive overload was greater in the older academic age participants than in the younger groups and that as academic experience increased, the visual presentation of the target stimuli produced greater levels of recall than was the case with acoustic and audio-visual presentation. Overall the findings indicate that cognitive overload increases with age, as the younger-age groups were found to have significantly higher levels of word recall in the audio-visual condition than the older groups.


Cognitive overload Audio-visual memory Recall Ageing 


La présente étude visait à fournir des preuves indiquant que le type de stimuli utilisés dans l'enseignement provoquerait des niveaux différents de rappeler à travers trois différents groupes d'âge scolaire. 121 participants, âgés de 11–25 ans, ont eu une tâche de mémoire linguistique en fonction sous la forme d'un dictionnaire composé de 15 en béton et 15 mots abstraits, présenté soit visuellement, acoustiquement, ou une combinaison des deux audio et visuels de présentation. L'étude a révélé que la présence de surcharge cognitive était plus élevée chez les participants plus âgés universitaires que dans les groupes plus jeunes et que l'expérience universitaire a augmenté, la présentation visuelle des stimuli cibles produites niveaux plus élevés de rappeler que ce fut le cas acoustique et audio- présentation visuelle. Globalement, les résultats indiquent que les augmentations de surcharge cognitive avec l'âge, comme les groupes d'âge plus jeunes ont été trouvés à des niveaux significativement plus élevés de rappel de mots dans la condition audio-visuelle que les groupes plus âgés.


  1. Ahmed, C. (1998). Powerpoint versus traditional overheads. Which is more effective in learning? Paper presented at South Dakota Association for Health, Physical Education and Recreation, Sioux Falls, South Dakota, November 1998.Google Scholar
  2. Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Education & Psychology, 54, 1–22.CrossRefGoogle Scholar
  3. Chen, C. M., Lui, C. Y., & Chang, M. H. (2006). Personalized curriculum sequencing utilising modified item response theory for web-based instruction. Expert Systems with Applications, 30(2), 378–396.CrossRefGoogle Scholar
  4. Conway, C. M., & Christianson, M. H. (2005). Modality constrained statistical learning of tactile, visual, and auditory sequences. Journal of Experimental Psychology. Learning, Memory, and Cognition, 31(1), 24–39.CrossRefGoogle Scholar
  5. Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for working memory research. Journal of Verbal Learning and Verbal Behaviour, 11, 67–84.CrossRefGoogle Scholar
  6. Diehl, R. L., Lotto, A. J., & Holt, L. L. (2003). Speech perception. Annual Review of Psychology, 55, 149–179.CrossRefGoogle Scholar
  7. Draper, S. W., & Brown, M. I. (2004). Increasing interactivity in lectures using an electronic voting system. Journal of Computer Assisted Learning, 20, 81–94.CrossRefGoogle Scholar
  8. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.CrossRefGoogle Scholar
  9. Fowler, C. A. (1986). An event approach to the study of speech perception from a direct-realist perspective. Journal of Phoenetics, 14, 3–28.Google Scholar
  10. Hirsh, I. J., & Watson, C. F. (1996). Auditory psychophysics and perception. Annual Review of Psychology, 47, 461–484.CrossRefGoogle Scholar
  11. Hoye, W., Dickinson, A., Banos, H., & Gierock, S. (2000). Executive functions and continuous visual memory test performance in a general neuropsychological sample. Archives of Clinical Neuropsychology, 15(8), 685–686.Google Scholar
  12. Jiang, Y., & Leung, A. W. (2005). Implicit learning of ignored visual context. Psychonomic Bulletin & Review, 12(1), 100–106.CrossRefGoogle Scholar
  13. Kalyuga, S., Chandler, P., & Sweller, J. (2004). When redundant on-screen text in multimedia technical instruction can interfere with learning. Human Factors: The Journal of Human Factors and Ergonomics Society, 3, w567–w581.CrossRefGoogle Scholar
  14. Lechuga, M. T., Moreno, V., Pelegrina, S., Gomez-Ariza, C. J., & Bajo, M. T. (2006). Age differences in memory control: Evidence from updating and retrieval-practice tasks. Acta Psychologica, 123, 279–298.CrossRefGoogle Scholar
  15. Leech, G., Rayson, P., & Wilson, A. (2001). Word frequencies in written and spoken English: Based on the British National Corpus. London: Longman.Google Scholar
  16. Liberman, A. M. (1996). Speech: A special code. Cambridge: MIT.Google Scholar
  17. Moreno, R., & Mayer, R. E. (2001). A coherence effect in multimedia learning: The case for minimizing irrelevant sounds in the design of multimedia instructional messages. Journal of Education & Psychology, 93(1), 187–198.CrossRefGoogle Scholar
  18. Paivio, A., Yuille, J. C., & Madigan, S. A. (1968). Concreteness, imagery, and meaningfulness values for 925 nouns. Journal of Experimental Psychology, Monograph Supplement, 76(1), 1–25.CrossRefGoogle Scholar
  19. Papinikolaou, K. A., Grigoriadou, M., Magoulas, G. D., & Kornilakis, H. (2002). Towards new forms of knowledge communication: The adaptive dimension of a web-based learning environment. Computers & Education, 39(4), 333–360.CrossRefGoogle Scholar
  20. Ryan, M., Carlton, K. H., & Ali, N. S. (1999). Evaluation of traditional classroom teaching methods versus course delivery via the World Wide Web. The Journal of Nursing Education, 38(6), 272–277.Google Scholar
  21. Saada-Robert, M. (1999). Effective means for learning to manage cognitive load in second grade school writing: A case study. Learning and Instruction, 9(2), 189–208.CrossRefGoogle Scholar
  22. Smith, H. J., Higgins, S., Wall, K., & Miller, J. (2005). Interactive whiteboards: Boon or bandwagon? A critical review of the literature. Journal of Computer Assisted Learning, 21(4), 91–104.CrossRefGoogle Scholar
  23. Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257–285.CrossRefGoogle Scholar
  24. Tindall-Ford, S., Chandler, P., & Sweller, J. (1997). When two sensory modes are better than one. Journal of Experimental Psychology, 3(4), 257–287.Google Scholar
  25. Wall, K., Higgins, S., & Smith, H. (2005). ‘The visual helps me understand the complicated things’: Pupil views of teaching and learning with interactive whiteboards. British Journal of Educational Technology, 36(5), 851–867.CrossRefGoogle Scholar

Copyright information

© Instituto Superior de Psicologia Aplicada, Lisboa, Portugal and Springer Science + Business Media BV 2010

Authors and Affiliations

  1. 1.Department of PsychologyGlasgow Caledonian UniversityGlasgowUK

Personalised recommendations