acta ethologica

, Volume 22, Issue 1, pp 17–28 | Cite as

Territoriality and agonistic behavior of subterranean Copionodontinae catfish (Siluriformes: Trichomycteridae) from Brazil

  • Bianca Rantin
  • Maria Elina BichuetteEmail author
Original Paper


Aggressive behavior may increase or decrease in troglobitic fishes, compared to epigean ones. Herein, we present the agonistic behavior repertoire and the causes that determine the dominance of two Brazilian cave catfishes: Glaphyropoma spinosum and putative undescribed Copionodon species. Both belong to Copionodontinae group, a small basal Trichomycteridae subfamily, and coexist in sandstone caves from Chapada Diamantina, northeastern Brazil. The results were compared with those exhibited by an epigean and syntopic species, Copionodon pecten. The fishes were paired and filmed until dominance was established; frequency of attacks was quantified and statistically analyzed. Cave copionodontine is one of the most hostile among subterranean fishes, with high frequency and complexity of aggressive components, including five new behavior components. Determinant factors for establishing dominance are body size, physical strength, and territoriality. Dominance is probably maintained by avoidance behavior by the subordinate and continuous attacks by the dominant. They are highly intolerant to conspecific, which may be a consequence of territoriality or feeding context. Two hypotheses may explain the agonistic behavior of cave species: (1) It is the maintenance of their ancestral behavior, being plesiomorphic in relation to the remaining Trichomycteridae subfamilies, corroborated by phototactic and spontaneous behavior; (2) It is an autapomorphy for Copionodontinae, due to new evolutionary acquisitions. The epigean C. pecten, in contrast, is much less aggressive, and the high tolerance to conspecific and the absence of accentuated territoriality may be explained by the food and/or space abundance in its natural habitats.


Agonistic behavior Cave catfish Copionodontinae Glaphyropoma Copionodon Chapada Diamantina 



We greatly thank J. E. Gallão, L. B. Simões, T. L. C. Scatolini, and Raimundo C. dos Santos (“Xiquinho”) who helped us in fieldwork at Igatu, E. Trajano and Lilian Casatti (UNESP), who contributed with valuable suggestions for the manuscript. Thanks also to environment governmental agency ICMBIO (Instituto Chico Mendes de Biodiversidade) for the collecting permission document (license number 20165-1) and to PPGERN/UFSCar (Programa de Pós Graduação em Ecologia e Recursos Naturais da Universidade Federal de São Carlos/ Brasil), for the infrastructure to develop this study.


This work was supported by Fundação de Amparo à Pesquisa no Estado de São Paulo (FAPESP) under Grant (processes numbers 2008/08910-8 and 2008/05678-7).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable national and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.


  1. Altmann J (1974) Observational study of behavior: sampling methods. Behavior 49:27–267CrossRefGoogle Scholar
  2. Arnold EN (1994) Investigating the origins of performance advantage: adaptation, exaptation and lineage effects. In: Eggleton P, Vane-Wright RI (eds) Phylogenetics and ecology. Academic Press, London, pp 155–178Google Scholar
  3. Beale A, Guibal C, Tamai TK, Klotz L, Cowen S (2013) Circadian rhythms in Mexican blind cavefish Astyanax mexicanus in the lab and in the field. Nat Commun 4:2769CrossRefGoogle Scholar
  4. Bechler DL (1983) The evolution of agonistic behavior in Amblyopsid fishes. Behav Ecol Sociobiol 12:35–42CrossRefGoogle Scholar
  5. Berti R, Ercolini A, Cianfanelli A (1983) The agressive behavior repertoire of an anolphtalmic phreatic fish from Somalia. Experientia 39 Birkhäuser Verlag. CH-4010Google Scholar
  6. Bichuette ME (2012) Ecologia populacional de peixes subterrâneos brasileiros: o caso dos bagrinhos Copionodontinae da Chapada Diamantina, Bahia central (Siluriformes: Trichomycteridae). In: XXIX Congresso Brasileiro de Zoologia, 2012, Salvador, BA. Curitiba, PR: Sociedade Brasileira de Zoologia 1:93–93Google Scholar
  7. Bichuette ME, de Pinna MCC, Trajano E (2008) A new species of Glaphyropoma: the first subterranean copionodontine catfish and the first occurrence of opercular odontodes in the subfamily (Siluriformes: Trichomycteridae). Neotrop Ichthyol 6(3):301–306CrossRefGoogle Scholar
  8. Cavallari N, Frigato E, Vallone D, Fröhlich N, Lopez-Olmeda JF, Foà A (2011) A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception. PLoS Biol 9(9):e1001142CrossRefGoogle Scholar
  9. Datovo A, Bockmann FA (2010) Dorsolateral head muscles of the catfish families Nematogenyidae and Trichomycteridae (Siluriformes: Loricarioidei): comparative anatomy and phylogenetic analysis. Neotrop Ichthyol 8:193–246Google Scholar
  10. de Pinna MCC (1992) A new subfamily of Trichomycteridae (Teleostei, Siluriformes), lower loricarioid relationships and a discussion on the impact of additional taxa for phylogenetic analysis. Zool J Linn Soc 106:175–229CrossRefGoogle Scholar
  11. de Pinna MCC (1998) Phylogenetic relationships of neotropical Siluriformes (Teleostei: Ostariophysi): historical overview and synthesis of hypotheses. In: Malabarba LR, Reis RE, Vari RP, Lucena ZM, Lucena CAS (eds) Phylogeny and Classification of Neotropical Fishes. Edipucrs, Porto Alegre, pp 279–330Google Scholar
  12. Dugatkin LA, Ohlsen S (1990) Contrasting asymmetries in value expectation and resource holding power: effects on attack behaviour and dominance in the pumpkinseed sunfish (Lepomis gibbosus). Anim Behav 39:802–804CrossRefGoogle Scholar
  13. Enquist M, Leimar O, Ljungberg T, Mallner Y, Segerdahl N (1990) A test of the sequential assessment game: fighting in the cichlid fish Nannacara anomala. Anim Behav 40(1):1–14CrossRefGoogle Scholar
  14. Ercolini A, Berti R, Cianfanelli A (1981) Aggressive behavior in Uegitglanis zammaranoi (Clariidae, Siluriformes), anophthalmic and phreatic fish from Somalia. Monit Zool Ital 14:33–56Google Scholar
  15. Espinasa L, Yamamoto Y, Jeffery WR (2005) Non-optical releasers for aggressive behavior in blind and blinded Astyanax (Teleostei, Characidae). Behav Process 70(2):144–148CrossRefGoogle Scholar
  16. Falter U (1983) Les comportaments agonistiques de Sarotherodon niloticus (Pisces,Cichlidae) et la signification évolutive de l’incubation buccale. Bull Cl Sci Acad R Belg 69:566–593Google Scholar
  17. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9pp.
  18. Hausberg C (1995) Das aggressions verhalten von Astyanax fasciatus (Characidae, Teleostei): zur ontogenie, genetic, and evolution der epigäichen und hypogäichen form. In: Trajano E, Bichuette ME, Kapoor BG (eds) Biology of subterranean fishes. Science Publishers, Inc., Enfield, pp 217–223Google Scholar
  19. Hsu Y, Wolf LL (2001) The winner and loser effect: what fighting behaviors are influenced? Anim Behav 61:777–786CrossRefGoogle Scholar
  20. Hsu Y, Lee SP, Chen MH, Yang SY, Cheng KC (2008) Switching assessment strategy during a contest: fighting in killifish Kryptolebias marmoratus. Anim Behav 75:1641–1649Google Scholar
  21. Köppen W (1948) Climatología. Fondo de cultura economica, MexicoGoogle Scholar
  22. Langecker TG, Neumann B, Hausberg C, Parzefall J (1995) Evolution of the optical releasers for aggressive behavior in cave-dwelling Astyanax fasciatus (Teleostei, Characidae). Behav Process 34:161–167CrossRefGoogle Scholar
  23. Leiser JK, Gagliardi JL, Itzkowitz M (2004) Does size matter? Assessment and fighting in small and large sizematched pairs of adult male convict cichlids. J Fish Biol 64(5):1339–1350CrossRefGoogle Scholar
  24. MME. Ministério das Minas e energia (1981) Projeto Radambrasil. Folha SD 24Google Scholar
  25. Monteiro-Neto D, Bichuette ME (2013) A expressão do comportamento agonístico em Ituglanis ramiroi Bichuette & Trajano 2004 (siluriformes: trichomycteridae) e sua aplicação para conservação. Rev Biol 10:28–33Google Scholar
  26. Noakes DLG, Baylis JR (1990) Behavior. In: Schreck CB, Moyle PB (eds) Methods for fish biology. American Fisheries Society, Maryland, pp 555–607Google Scholar
  27. Parzefall J, Trajano E (2010) Behavioral patterns in subterranean fishes. In: Trajano E, Bichuette ME, Kapoor BG (eds) Biology of subterranean fishes. Science Publishers, Inc., Enfield, pp 217–223Google Scholar
  28. Poulson TL, Lavoie KH (2000) The trophic basis of subsurface ecosystems. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world. Elsevier, Amsterdam, pp 56–67Google Scholar
  29. Rantin B, Bichuette ME (2013) Phototactic behavior of subterranean Copionodontinae Pinna, 1992 catfishes (Siluriformes, Trichomycteridae) from Chapada Diamantina, central Bahia, northeastern Brazil. Int J Speleol 42:64–70CrossRefGoogle Scholar
  30. Rantin B, Bichuette ME (2015) Spontaneous behavior of basal Copionodontinae cave catfishes from Brazil (Teleostei, Siluriformes, Trichomycteridae). Subt Biol 16:61–77Google Scholar
  31. Rétaux S, Elipot Y (2013) Feed or fight: a behavioral shift in blind cavefish. Commun Integr Biol 6(2):e23166Google Scholar
  32. Sazima I, Pombal-Jr J (1986) Um albino de Rhamdella minuta, com notas sobre comportamento (Osteichthyes, Pimelodidae). Rev Bras Biol 46:377–381Google Scholar
  33. Schobbenhaus C, Campos DA, Queiroz ET, Winge M, Berbert-Born M (1999) Sítios Geológicos e Paleontológicos do Brasil. Available in Accessed August 2010
  34. Trajano E (1991) The agonistic behavior of Pimelodella kronei, a troglobitic catfish from Southeastern Brazil (Siluriformes, Pimelodidae). Behav Process 23:113–124CrossRefGoogle Scholar
  35. Trajano E (2003) Ecology and ethology of subterranean catfishes. In: Arratia G, Kapoor BG, Chardon M, Diogo R (eds) Catfishes. Science Publishers Inc., Enfield, pp 217–223Google Scholar
  36. Trajano E, Borowsky R (2003) Biological rhythms in cavefishes from Thailand. In: American Society of Ichthyologists and Herpetologists´ 83rd Annual Meeting, Joint Meeting of Ichthyologists and Herpetologists. Manaus: INPA/ASIHGoogle Scholar
  37. Trajano E, Souza AM (1994) Behavior of Ancistrus cryptophthalmus, an armoured blind catfish from caves of central Brazil, with notes on syntopic Trichomycterus sp. (Siluriformes, Loricariidae, Trichomycteridae). Mém Biosp 21:151–159Google Scholar
  38. Trajano E, Bockmann FA (1999) Evolution of ecology and behaviour in Brazilian heptapterine cave catfishes, based on cladistic analysis (Teleostei: Siluriformes). Mem Biospeol 26:123–129Google Scholar
  39. Trajano E, Mugue N, Krejca J, Vidthayanon C, Smart D, Borowsky R (2002) Habitat, distribution, ecology and behavior of cave batilorids from Thailand (Teleostei: Cypriniformes). Ichthyol Explor Fres 13:169–184Google Scholar
  40. Wilkens H (2010) Genes, modules and the evolution of cave fish. Heredity 105:413–422CrossRefGoogle Scholar
  41. Zanata AM, Primitivo C (2013) Natural history of an endemic trichomycterid catfish from Chapada Diamantina in northeastern Brazil. J Nat Hist 48(3-4):203–228CrossRefGoogle Scholar
  42. Zar JH (1996) Biostatistical analysis, 2nd edn. Prentice-Hall International, New JerseyGoogle Scholar

Copyright information

© ISPA, CRL 2018

Authors and Affiliations

  1. 1.Laboratório de Estudos Subterrâneos, Departamento de Ecologia e Biologia EvolutivaUniversidade Federal de São CarlosSão CarlosBrazil

Personalised recommendations