acta ethologica

, Volume 20, Issue 3, pp 291–295 | Cite as

Threat level influences the use of venom in a scorpion species, Tityus stigmurus (Scorpiones, Buthidae)

  • André F.A. Lira
  • Adriana B. Santos
  • Nathália A. Silva
  • René D. Martins
Original Paper

Abstract

Venom demands high metabolic costs of the organisms that produce it because it is comprised of a complex mixture of various toxins. Due to this high cost, venomous animals modulate the amount or type of venom used depending on factors such as size of prey or intensity of predation threat. This paper shows that Tityus stigmurus, a prevalent scorpion species in the urban environment in the Northeast of Brazil, modulates its venom in response to different levels of stimuli. Sixty animals were collected in Vitória de Santo Antão, Pernambuco. The animals were subjected to either high or low levels of threats. During the tests, the animals were gently touched five times on the mesosoma with forceps at an interval of 5 s (high threat) or 5 min (low threat). The response varied significantly between intensity levels, with the animals exposed to low threat stinging in 70% of the observations and releasing a clear venom. In contrast, individuals subjected to a high level of threat stung in 83% of the observations and released a milky venom. Our results suggest that T. stigmurus reacts differently depending on the stimulus level. When the threat was considered high, the animal reacted more aggressively. Our results support the assumption that milky venom is only used when the animal is highly stressed because this venom represents higher metabolic costs than the production of clear venom.

Keywords

Risk assessment Defensive stinging Venom-metering hypothesis Brazil 

Notes

Acknowledgements

We are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for granting a Ph.D. scholarship to A.F.A. Lira and a M.Sc. scholarship to A.B. Santos. We also thank two anonymous reviewers and to editor for valuable suggestions on an earlier draft of this manuscript.

References

  1. Albuquerque CMR, Santana-Neto PL, Amorim MLP, Pires SCV (2013) Pediatric epidemiological aspects of scorpionism and report on fatal cases from Tityus stigmurus stings (Scorpiones: Buthidae) in state of Pernambuco, Brazil. Rev Soc Bras Med Trop 46:484–489. doi:10.1590/0037-8682-0089-2013 CrossRefPubMedGoogle Scholar
  2. Armas LF, Abud Antun AJ (2004) Adiciones al género Tityus C. L. Koch, 1836 en República Dominicana, con la descripción de dos especies nuevas (Scorpiones: Buthidae). Rev Ibér Aracnol 10:53–64Google Scholar
  3. Ayres M, Ayres Júnior M, Ayres DL, Santos AA (2007) BIOESTAT – Aplicações estatísticas nas áreas das ciências bio-médicas. ONG mamirauá, BelémGoogle Scholar
  4. Brasil (2009) Manual de Controle de Escorpiões. Ministério da Saúde, Secretaria de Vigilância em Saúde, BrasíliaGoogle Scholar
  5. Brasil (2012) Portal da Saúde. http://portal.saude.gov.br. Accessed 10 Nov 2012
  6. Brazil TK, Porto TJ (2010) Os escorpiões. EDUFBA, BahiaGoogle Scholar
  7. Bub K, Bowerman RF (1979) Prey capture by the scorpion Hadrurus arizonensis Ewing. J Arachnol 7:243–253Google Scholar
  8. Carmo RFR, Amorim HP, Vasconcelos SD (2013) Scorpion diversity in two types of seasonally dry tropical forest in the semi-arid region of northeastern Brazil. Biota Neotrop 13:340–344. doi:10.1590/S1676-06032013000200037 CrossRefGoogle Scholar
  9. Casper GS (1985) Prey capture and stinging behavior in the emperor scorpion, Pandinus imperator. J Arachnol 13:277–283Google Scholar
  10. Chantall-Rocha S, Japyassú HF (2017) Diffuse resistance courtship in the scorpion Rhopalurus rochai (Scorpiones: Buthidae). Behav Process 135:45–55. doi:10.1016/j.beproc.2016.11.017 CrossRefGoogle Scholar
  11. Chippaux JP, Goyffon M (2008) Epidemiology of scorpionism: a global appraisal. Acta Trop 107:71–79. doi:10.1016/j.actatropica.2008.05.021 CrossRefPubMedGoogle Scholar
  12. Cushing BS, Matherne A (1980) Stinger utilization and predation in the scorpion Paruroctonus boreus. Great Basin Nat 40:193–195Google Scholar
  13. de Roodt AR (2014) Comments on environmental and sanitary aspects of the scorpionism by Tityus trivittatus in Buenos Aires City, Argentina. Toxins 6:1434–1452. doi:10.3390/toxins6041434 CrossRefPubMedPubMedCentralGoogle Scholar
  14. De Souza CAR, Candido DM, Lucas SM, Brescovit AD (2009) On the Tityus stigmurus complex (Scorpiones, Buthidae). Zootaxa 1987:1–38Google Scholar
  15. DeSouza AM, Neto PLS, Lira AFA, Albuquerque CMR (2016) Growth and developmental time in the parthenogenetic scorpion Tityus stigmurus (Thorell, 1876) (Scorpiones: Buthidae). Acta Sci Biol Sci 38:85–90. doi:10.4025/actascibiolsci.v38i1.28235 CrossRefGoogle Scholar
  16. Francke OF, Stockwell SA (1987) Scorpions from Costa Rica. Texas Tech Press, TexasGoogle Scholar
  17. Gwee MCE, Nirthanan S, Khoo HE, Gopalakrishnakone P, Kini RM, Cheah LS (2002) Autonomic effects of some scorpion venoms and toxins. Clin Exp Pharmacol Physiol 29:795–801CrossRefPubMedGoogle Scholar
  18. Hayes WK, Herbert SS, Rehling GC, Gennaro J (2002) Factors that in uence venom expenditure in viperids and other snake species during predatory and defensive contexts. In: Schuett GW, Hoggren M, Douglas ME, Greene HW (eds) Biology of the vipers. Eagle Mountain, Utah, pp 207–233Google Scholar
  19. Holderied M, Korine C, Moritz T (2011) Hemprich’s long-eared bat (Otonycteris hemprichii) as a predator of scorpions: whispering echolocation, passive gleaning and prey selection. J Comp Physiol A 197:425–433. doi:10.1007/s00359-010-0608-3 CrossRefGoogle Scholar
  20. Inceoglu B, Lango J, Jing J, Chen L, Doymaz F, Pessah IN, Hammock BD (2003) One scorpion, two venoms: prevenom of Parabuthus transvaalicus acts as an alternative type of venom with distinct mechanism of action. Proc Natl Acad Sci U S A 100:922–927. doi:10.1073/pnas.242735499 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Écoscience 5:361–394. doi:10.1080/11956860.1998.11682468 CrossRefGoogle Scholar
  22. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640. doi:10.1139/z90-092 CrossRefGoogle Scholar
  23. Lira AFA, Albuquerque CMR (2014) Diversity of scorpions (Chelicerata: Arachnida) in the Atlantic Forest in Pernambuco, northeastern Brazil. Check list 10:1331–1335. doi:10.15560/10.6.1331 CrossRefGoogle Scholar
  24. Lira AFA, DeSouza AM (2014) Microhabitat use by scorpion species (Arachnida: Scorpiones) in the montane Atlantic Rain Forest, Brazil. Rev Ibér Aracnol 24:107–108Google Scholar
  25. Lira AFA, Souza AM, Silva Filho AA, Albuquerque CMR (2013) Spatio-temporal microhabitat use by two co-occurring species of scorpions in Atlantic rainforest in Brazil. Zoology 116:182–185. doi:10.1016/j.zool.2013.01.002 CrossRefPubMedGoogle Scholar
  26. Lourenço WR (2002) Scorpions of Brazil. Les Éditions de l’If, ParisGoogle Scholar
  27. Lourenço WR, Leguin E (2008) The true identity of Scorpio (Atreus) obscurus Gervais, 1843 (Scorpiones, Buthidae). Euscorpius 75:1–11Google Scholar
  28. Machan L (1968) Spectral sensitivity of scorpion eyes as possible roles of shielding pigment effect. J Exp Biol 49:95–105Google Scholar
  29. Marcussi S, Arantes EC, Soares AM (2011) Escorpiões: biologia, envenenamento e mecanismos de ação de suas toxinas, 1st edn. FUNPEC, Ribeirão PretoGoogle Scholar
  30. McCue MD (2006) Cost of producing venom in three North American pitviper species. Copeia 4:818–825. doi:10.1643/0045-8511(2006)6[818:COPVIT]2.0.CO;2 CrossRefGoogle Scholar
  31. Mineo MF, Del Claro K (2006) Mechanoreceptive function of pectines in the Brazilian yellow scorpion Tityus serrulatus: perception of substrate-borne vibrations and prey detection. Acta Ethol 9:79–85. doi:10.1007/s10211-006-0021-7 CrossRefGoogle Scholar
  32. Morgenstern D, King GF (2013) The venom optimization hypothesis revisited. Toxicon 63:120–128. doi:10.1016/j.toxicon.2012.11.022 CrossRefPubMedGoogle Scholar
  33. Nelsen DR, Kelln W, Hayes WK (2014) Poke but don’t pinch: risk assessment and venom metering in the western black widow spider, Latrodectus hesperus. Anim Behav 89:107–114. doi:10.1016/j.anbehav.2013.12.019 CrossRefGoogle Scholar
  34. Nisani Z, Hayes WK (2011) Defensive stinging by Parabuthus transvaalicus scorpions: risk assessment and venom metering. Anim Behav 81:627–633. doi:10.1016/j.anbehav.2010.12.010 CrossRefGoogle Scholar
  35. Nisani Z, Dunbar SG, Hayes WK (2007) Cost of venom regeneration in Parabuthus transvaalicus (Arachnida: Buthidae). Comp Biochem Physiol A Mol Integr Physiol 147:509–513. doi:10.1016/j.cbpa.2007.01.027 CrossRefPubMedGoogle Scholar
  36. Nisani Z, Boskovic DS, Dunbar SG, Kelln W, Hayes WK (2012) Investigating the chemical profile of regenerated scorpion (Parabuthus transvaalicus) venom in relation to metabolic cost and toxicity. Toxicon 60:315–323. doi:10.1016/j.toxicon.2012.04.343 CrossRefPubMedGoogle Scholar
  37. Ojanguren Affilastro AA (2005) Estudio monográfico de los escorpiones de la Republica Argentina. Rev Ibér Aracnol 11:75–241Google Scholar
  38. Pennington RT, Lavin M, Oliveira-Filho A (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu Rev Ecol Evol Syst 40:437–457. doi:10.1146/annurev.ecolsys.110308.120327 CrossRefGoogle Scholar
  39. Pimenta AMC, Almeida FDM, de Lima ME, Martin-Eauclaire MF, Bougis PE (2003) Individual variability in Tityus serrulatus (Scorpiones, Buthidae) venom elicited by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 17:413–418. doi:10.1002/rcm.934 CrossRefPubMedGoogle Scholar
  40. Polis GA (1990) The biology of scorpions. Stanford University Press, StanfordGoogle Scholar
  41. Possani LD (1984) Structure of scorpion toxins. In: Tu AT (ed) Handbook of natural toxins, vol 2. Marcel Dekker, New York, pp 513–550Google Scholar
  42. Pucca MB, Oliveira FN, Schwartz EF, Arantes EC, Lira-da-Silva RM (2015) Scorpionism and dangerous species of Brazil. Scorpion Venoms 299–324. doi:10.1007/978-94-007-6647-1_20-1
  43. Rein JO (1993) Sting use in two species of Parabuthus scorpions (Buthidae). J Arachnol 21:60–63Google Scholar
  44. Rein JO (2003) Prey capture behavior in the east African scorpions Parabuthus leiosoma and P. pallidus. Euscorpius 6:1–8Google Scholar
  45. Ross LK (2010) Confirmation of the parthenogenesis in the medically significant, synanthropic scorpion Tityus stigmurus (Thorell, 1876) (Scorpiones: Buthidae). Rev Ibér Aracnol 18:115–121Google Scholar
  46. Rowe AH, Rowe MP (2006) Risk assessment by grasshopper mice (Onychomys spp.) feeding on neurotoxic prey (Centruroides spp.) Anim Behav 71:725–734. doi:10.1016/j.anbehav.2005.08.003 CrossRefGoogle Scholar
  47. Rowe AH, Rowe MP (2008) Physiological resistance of grasshopper mice (Onychomys spp.) to Arizona bark scorpion (Centruroides exilicauda) venom. Toxicon 52:597–605. doi:10.1016/j.toxicon.2008.07.004 CrossRefPubMedGoogle Scholar
  48. Stockmann R, Ythier E (2010) Scorpions of the world. NAP editions, ParisGoogle Scholar
  49. van der Meijden A, Lobo Coelho P, Sousa P, Herrel A (2013) Choose your weapon: defensive behavior is associated with morphology and performance in scorpions. PLoS One 8:e78955. doi:10.1371/journal.pone.0078955 CrossRefPubMedPubMedCentralGoogle Scholar
  50. van der Meijden A, Coelho P, Rasko M (2015) Variability in venom volume, flow rate and duration in defensive stings of five scorpion species. Toxicon 100:60–66. doi:10.1016/j.toxicon.2015.04.011 CrossRefPubMedGoogle Scholar
  51. Vasconcelos F, Lanchote VL, Bendhack LM, Giglio JR, Sampaio SV, Arantes EC (2005) Effects of voltage-gated Na+ channel toxins from Tityus serrulatus venom on rat arterial blood pressure and plasma catecholamines. Comp Biochem Physiol C Toxicol Pharmacol 141:85–92. doi:10.1016/j.cca.2005.05.012 CrossRefPubMedGoogle Scholar
  52. Warburg M (1998) Qualitative and quantitative analysis of intra-and interspecific behavioural patterns among scorpions. J Ethol 16:115–121. doi:10.1007/BF02769290 CrossRefGoogle Scholar
  53. Wigger E, Kuhn-Nentwig L, Nentwig W (2002) The venom optimisation hypothesis: a spider injects large venom quantities only into difficult prey types. Toxicon 40:749–752. doi:10.1016/S0041-0101(01)00277-X CrossRefPubMedGoogle Scholar
  54. Yahel-Niv A, Zlotkin E (1979) Comparative studies on venom obtained from individual scorpions by natural stings. Toxicon 17:435–446. doi:10.1016/0041-0101(79)90277-0 CrossRefPubMedGoogle Scholar
  55. Zlotkin E (1969) A simple device for collecting scorpion venom. Toxicon 7:331–332. doi:10.1016/0041-0101(69)90035-X CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany and ISPA 2017

Authors and Affiliations

  • André F.A. Lira
    • 1
  • Adriana B. Santos
    • 1
  • Nathália A. Silva
    • 2
  • René D. Martins
    • 2
  1. 1.Programa de Pós-Graduação em Biologia Animal, Departamento de ZoologiaUniversidade Federal de Pernambuco – UFPERecifeBrazil
  2. 2.Centro Acadêmico de VitóriaUniversidade Federal de Pernambuco UFPEVitória de Santo AntãoBrazil

Personalised recommendations