Advertisement

acta ethologica

, Volume 20, Issue 3, pp 313–317 | Cite as

Pregnant pipefish with a simple brooding surface loose less weight when carrying heavier eggs: evidence of compensation for low oocyte quality?

  • B. Miranda
  • N. Vieira
  • Nuno Monteiro
Short Communication
  • 111 Downloads

Abstract

The evolutionary radiation of syngnathids has been accompanied by a diversification of structures involved in parental care, from a hypothetical ancestral presenting a simple brooding structure. The architectural simplicity of Nerophis male brooding structures led to the hypothesis that the relationship between father and developing embryos was feeble, unlike that observed in syngnathids with brood pouches. Here, we show that males loose considerable weight during pregnancy, especially so when egg weight is low. These results highlight the possibility of a compensatory mechanism and help justify why males in the wild tend to select large and colourful females, which are more fecund and able to produce larger eggs. Together with available information on the mating system, we also discuss some of the interplaying reasons behind the observed sex role reversal and high sexual dimorphism in the worm pipefish.

Keywords

Differential allocation Pregnancy Sexual dimorphism Embryonic development Sexual selection 

Notes

Acknowledgements

The Portuguese Foundation for Science and Technology funded Nuno Monteiro through a postdoc grant (SFRH/BPD/103829/2014). We thank the contribution of Clara Amorim, Anders Berglund and an anonymous reviewer, which helped improve the manuscript.

References

  1. Berglund A, Rosenqvist G, Svensson I (1986) Reversed sex-roles and parental energy investment in zygotes of 2 pipefish (Syngnathidae) species marine ecology progress series. 29:209–215. doi: 10.3354/meps029209
  2. Carcupino M (2002) Functional significance of the male brood pouch in the reproductive strategies of pipefishes and seahorses: a morphological and ultrastructural comparative study on three anatomically different pouches. J Fish Biol 61:1465–1480. doi: 10.1006/jfbi.2002.2160 CrossRefGoogle Scholar
  3. Cunha M, Berglund A, Alves T, Monteiro NM (2016) Reduced cannibalism during male pregnancy. Behaviour 153:91–106. doi: 10.1163/1568539x-00003328 CrossRefGoogle Scholar
  4. Dzyuba BB, Van Look KJ, Kholodnyy VS, Satake N, Cheung S, Holt WV (2008) Variable sperm size and motility activation in the pipefish, Syngnathus abaster; adaptations to paternal care or environmental plasticity? Reprod Fertil Dev 20:474–482CrossRefPubMedGoogle Scholar
  5. Hamilton H et al (2017) Molecular phylogeny and patterns of diversification in syngnathid fishes. Mol Phylogenet Evol 107:388–403. doi: 10.1016/j.ympev.2016.10.003 CrossRefPubMedGoogle Scholar
  6. Herald ES (1959) From pipefish to seahorse: a study of phylogenetic relationships. Proc Natl Acad Sci USA 29:465–473Google Scholar
  7. Kvarnemo C, Mobley KB, Partridge C, Jones AG, Ahnesjo I (2011) Evidence of paternal nutrient provisioning to embryos in broad-nosed pipefish. J Fish Biol 78:1725–1737. doi: 10.1111/j.1095-8649.2011.02989.x CrossRefPubMedGoogle Scholar
  8. Lahaye J (1971) L'Ovogenèse chez Nerophis lumbriciformis (Pennant, 1776). Le cycle sexuel Cahiers De Biologie Marine 12:239–254Google Scholar
  9. McCoy EE, Jones AG, Avise JC (2001) The genetic mating system and tests for cuckoldry in a pipefish species in which males fertilize eggs and brood offspring externally. Mol Ecol 10:1793–1800CrossRefPubMedGoogle Scholar
  10. Monteiro NM, Lyons DO (2012) Stronger sexual selection in warmer waters: the case of a sex role reversed pipefish. PLoS ONE 7. doi: 10.1371/journal.pone.0044251
  11. Monteiro N, Vieira M, Almada V (2002) The courtship behaviour of the pipefish Nerophis lumbriciformis: reflections of an adaptation to intertidal life. Acta Ethologica 4:109–111. doi: 10.1007/s102110100048 CrossRefGoogle Scholar
  12. Monteiro N, Almada V, Santos A, Vieira M (2001) The breeding ecology of the pipefish and its relation to latitude and water temperature. J Mar Biol Assoc U K 81:1031–1033CrossRefGoogle Scholar
  13. Monteiro N, Almada V, Vieira M (2005a) Implications of different brood pouch structures in syngnathid reproduction. J Mar Biol Assoc U K 85:1235–1241CrossRefGoogle Scholar
  14. Monteiro N, Almada V, Vieira M (2005b) Temporal patterns of breeding and recruitment in Nerophis lumbriciformis (Pisces; Syngnathidae) related to seawater temperatures. J Fish Biol 67:1475–1480. doi: 10.1111/j.1095-8649.2005.00818.x CrossRefGoogle Scholar
  15. Monteiro N, Vieira M, Almada V (2005c) Homing behaviour and individual identification of the pipefish Nerophis lumbriciformis (Pisces: Syngnathidae): a true intertidal resident? Estuar Coast Shelf Sci 63:93–99. doi: 10.1016/j.ecss.2004.10.012 CrossRefGoogle Scholar
  16. Monteiro NM, Berglund A, Vieira MN, Almada VC (2006) Reproductive migrations of the sex role reversed pipefish (Pisces; Syngnathidae). J Fish Biol 69:66–74. doi: 10.1111/j.1095-8649.2006.01064.x CrossRefGoogle Scholar
  17. Monteiro N, Silva R, Cunha M, Antunes A, Jones A, Vieira M (2013a) Validating the use of coloration patterns for individual recognition in the worm pipefish using a novel set of microsatellite markers. Mol Ecol ResourGoogle Scholar
  18. Monteiro N, Vieira M, Lyons D (2013b) Operational sex ratio, reproductive costs, and the potential for intrasexual competition. Biol J Linn SocGoogle Scholar
  19. Monteiro N, Carneiro D, Antunes A, Queiros N, Vieira N, Jones A (2017a) The lek mating system of the worm pipefish (Nerophis lumbriciformis): a molecular maternity analysis and test of the phenotype-linked fertility hypothesis. Mol Ecol 26:1371–1385. doi: 10.1111/mec.13931 CrossRefPubMedGoogle Scholar
  20. Monteiro N, Cunha M, Ferreira L, Vieira N, Antunes A, Lyons D, Jones AG (2017b) Parabolic variation in sexual selection intensity across the range of a cold-water pipefish: implications for susceptibility to climate change. Glob Chang Biol. doi: 10.1111/gcb.13630
  21. Paczolt KA, Jones AG (2010) Post-copulatory sexual selection and sexual conflict in the evolution of male pregnancy. Nature 464:401–404. doi: 10.1038/nature08861 CrossRefPubMedGoogle Scholar
  22. Partridge C, Shardo J, Boettcher A (2007) Osmoregulatory role of the brood pouch in the euryhaline gulf pipefish, Syngnathus scovelli. Comp Biochem Physiol Mol Integr Physiol 147:556–561CrossRefGoogle Scholar
  23. Ripley J (2009) Osmoregulatory role of the paternal brood pouch for two Syngnathus species. Comp Biochem PhysiolGoogle Scholar
  24. Roth O, Klein V, Beemelmanns A, Scharsack JP, TBH R (2012) Male pregnancy and biparental immune priming. Am Nat 180:802–814CrossRefPubMedGoogle Scholar
  25. Sagebakken G, Ahnesjo I, Braga Goncalves I, Kvarnemo C (2011) Multiply mated males show higher embryo survival in a paternally caring fish. Behav Ecol 22:625–629. doi: 10.1093/beheco/arr023 CrossRefGoogle Scholar
  26. Stolting K, Wilson A (2007) Male pregnancy in seahorses and pipefish: beyond the mammalian model BioEssays 29Google Scholar
  27. Wilson AB, Vincent A, Ahnesjö I, Meyer A (2001) Male pregnancy in seahorses and pipefishes (family Syngnathidae): rapid diversification of paternal brood pouch morphology inferred from a molecular phylogeny. J Hered 92:159–166CrossRefPubMedGoogle Scholar
  28. Wilson A, Ahnesjö I, Vincent A, Meyer A (2003) The dynamics of male brooding, mating patterns, and sex roles in pipefishes and seahorses (family Syngnathidae). Evolution 57:1374–1386CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany and ISPA 2017

Authors and Affiliations

  1. 1.Faculdade de Ciências da Universidade do PortoPortoPortugal
  2. 2.CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e AmbientalUniversidade do PortoPortoPortugal
  3. 3.CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairaoPortugal
  4. 4.CEBIMED, Faculdade de Ciências da SaúdeUniversidade Fernando PessoaPortoPortugal

Personalised recommendations