acta ethologica

, Volume 20, Issue 2, pp 85–94 | Cite as

Computer-manipulated stimuli as a research tool in Mozambique tilapia Oreochromis mossambicus

  • Marie A. Wackermannova
  • Pavel Horky
  • M. Clara P. Amorim
  • Paulo J. Fonseca
Original Paper


Multimodal communication is essential in social interactions in cichlid fish, including conspecifics’ recognition, agonistic interactions and courtship behaviour. Computer-manipulated image stimuli and sound playback offer powerful tools to assess the relative relevance of visual and acoustic stimuli in fish behavioural studies, but these techniques require validation for each taxon. The aim of the present study was to investigate whether Mozambique tilapia Oreochromis mossambicus responds to computer-manipulated visual stimuli and acoustic playback. Six experiments were conducted: computer animation playback, video playback, interaction with a mirror, presentation of a live male in a jar alone and combined with courting sound playback or with white noise playback. Individual agonistic interactions (lateral displays, up and down swimming, butting) and courting behaviours (tilting leading, digging) were tallied for each experiment. Our results suggest that non-interactive computer-manipulated visual stimuli is not a suitable tool in behavioural research with Mozambique tilapia. In contrast, interaction with a live male in a jar seems to remain the best visual research instrument inducing significant strong behavioural responses. Although none or only a few agonistic interactions were observed towards video playbacks or computer animations, such interactions significantly increased towards a male in jar and were modulated by courtship sound playback, suggesting the additional relevance of sound playback as a tool in behavioural research with Mozambique tilapia, including the study of multimodal signalling.


Playback experiments Visual stimuli Acoustic signals Agonistic interactions Courtship behaviour 



Authors sincerely thank O. Slavik for valuable input during manuscript preparation and Daniel Alves for help during the preparation of the playback experiments.

Compliance with ethical standards


This study was funded by the Science and Technology Foundation, Portugal, pluriannual program UI&D 331/94 and UI&D 329, and the strategic projects UID/MAR/04292/2013 and UID/BIA/00329/2013 granted to MARE and to cE3c, respectively.

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Amorim MCP, Almada VC (2005) The outcome of male-male encounters affects subsequent sound production during courtship in the cichlid fish Oreochromis mossambicus. Anim Behav 69:595–601. doi: 10.1016/j.anbehav.2004.06.016 CrossRefGoogle Scholar
  2. Amorim MC, da Ponte AN, Caiano M et al (2013) Mate preference in the painted goby: the influence of visual and acoustic courtship signals. J Exp Biol 216:3996–4004. doi: 10.1242/jeb.088682 CrossRefPubMedGoogle Scholar
  3. Amorim MCP, Fonseca PJ, Almada VC (2003) Sound production during courtship and spawning of Oreochromis mossambicus : male – female and male – male interactions. J Fish Biol 62:658–672. doi: 10.1046/j.0022-1112.2003.00054.x CrossRefGoogle Scholar
  4. Bakker T, Künzler R (1998) Computer animations as a tool in the study of mating preferences. Behaviour 135:1137–1159. doi: 10.1163/156853998792913537 CrossRefGoogle Scholar
  5. Baldauf SA, Bakker TC, Herder F et al (2010) Male mate choice scales female ornament allometry in a cichlid fish. BMC Evol Biol 10:301. doi: 10.1186/1471-2148-10-301 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baldauf SA, Kullmann H, Thunken T et al (2009) Computer animation as a tool to study preferences in the cichlid Pelvicachromis taeniatus. J Fish Biol 75:738–746. doi: 10.1111/j.1095-8649.2009.02347.x CrossRefPubMedGoogle Scholar
  7. Balshine-Earn S, Lotem A (1998) Individual recognititon in a cooperatively breeding cichlid: evidence from video playback experiments. Behaviour 135:369–386. doi: 10.1163/156853998793066221 CrossRefGoogle Scholar
  8. Balzarini V, Taborsky M, Wanner S et al (2014) Mirror, mirror on the wall: the predictive value of mirror tests for measuring aggression in fish. Behav Ecol Sociobiol 68:871–878. doi: 10.1007/s00265-014-1698-7 CrossRefGoogle Scholar
  9. Bertucci F, Attia J, Beauchaud M et al (2013) The relevance of temporal cues in fish sound: a first experimental investigation using modified signals in cichlids. Anim Cogn 16:45–54. doi: 10.1007/s10071-012-0549-z CrossRefPubMedGoogle Scholar
  10. Bertucci F, Beauchaud M, Attia J et al (2010) Sounds modulate males’ aggressiveness in a cichlid fish. Ethology 116:1179–1188CrossRefGoogle Scholar
  11. Bradbury JW, Vehrencamp SL (2011) Principles in animal communication. Cornell University, CornellGoogle Scholar
  12. Bruton MN, Boltt RE (1975) Aspects of the biology of Tilapia mossambica Peters (Pisces: Cichlidae) in a natural freshwater lake (Lake Sibaya, South Africa). J Fish Biol 7:423–446CrossRefGoogle Scholar
  13. Butkowski T, Yan W, Gray AM, et al. (2011) Automated interactive video playback for studies of animal communication. J Vis Exp 3–7. doi:  10.3791/2374
  14. Candolin U (2003) The use of multiple cues in mate choice. Biol Rev Camb Philos Soc 78:575–595. doi: 10.1017/S1464793103006158 CrossRefPubMedGoogle Scholar
  15. Chen C-C, Fernald RD (2011) Visual information alone changes behavior and physiology during social interactions in a cichlid fish (Astalotilapia burtoni). PLSs One 6:e20313. doi: 10.1371/journal.pone.0020313 CrossRefGoogle Scholar
  16. Chen S-C, Xiao C, Troje NF et al (2015) Functional characterisation of the chromatically antagonistic photosensitive mechanism of erythrophores in the tilapia Oreochromis niloticus. J Exp Biol 218:748–756. doi: 10.1242/jeb.106831 CrossRefPubMedGoogle Scholar
  17. Clark DL, Stephenson KR (1999) Response to video and computer-animated images by the tiger barb, Puntius tetrazona. Environ Biol Fish 56:317–324. doi: 10.1023/A:1007549721631 CrossRefGoogle Scholar
  18. D’Eath RB (1998) Can video images imitate real stimuli in animal behaviour experiments? Biol Rev 73:267–292CrossRefGoogle Scholar
  19. Dijkstra PD, Lindström J, Metcalfe NB, Hemelrijk CK, Brendel M, Seehausen O, Groothius TGG (2010) Frequency-dependent social dominance in a color polymorphic cichlid fish. Evolution 64:2797-2807. doi: 10.1111/j.1558-5646.2010.01046.x
  20. Elwood RW, Stoilova V, Mcdonnell A et al (2014) Do mirrors reflect reality in agonistic encounters ? A test of mutual cooperation in displays. Anim Behav 97:63–67. doi: 10.1016/j.anbehav.2014.07.028 CrossRefGoogle Scholar
  21. Escobar-Camacho D, Carleton KL (2015) Sensory modalities in cichlid fish behaviour. Curr Opin Behav Sci 6:115-124. doi:  10.1016/j.cobeha.2015.11.002
  22. Estramil N, Bouton N, Verzijden MN et al (2013) Cichlids respond to conspecifis sounds but females exhibit no phototaxis without the presence of live males. Ecol Freshw Fish 23:305–312. doi: 10.1111/eff.12081 CrossRefGoogle Scholar
  23. Evans CS, Macedonia JM, Marler P (1993) Effects of apparent size and speed on the response of chickens, Gallus gallus, to computer-generated simulations of aerial predators. Anim Behav 46:1–11CrossRefGoogle Scholar
  24. Fonseca PJ, Maia Alves J (2012) A new concept in underwater high fidelity low frequency sound generation. Rev Sci Instrum 83:55007. doi: 10.1063/1.4717680 CrossRefGoogle Scholar
  25. Ghazanfar AA, Schroeder CE (2006) Is the neocortex essentially multisensory? Trends Cogn Sci 10:278–285CrossRefPubMedGoogle Scholar
  26. Hankinson SJ, Morris MR (2003) Avoiding a compromise between sexual selection and species recognition: female swordtail fish assess multiple species-specific cues. Behav Ecol 14:282–287CrossRefGoogle Scholar
  27. Hawryshyn CW (2010) Ultraviolet polarization vision and visually guided behavior in fishes. Brain Behav Evol 75:185–194. doi: 10.1159/000314275 CrossRefGoogle Scholar
  28. Hornsby MAW, Sabbah S, Robertson RM, Hawryshyn CW (2013) Modulation of environmental light alters reception and production of visual signals in Nile tilapia. J Exp Biol 216:3110–3122. doi: 10.1242/jeb.081331 CrossRefPubMedGoogle Scholar
  29. Keller-Costa T, Canário AVM, Hubbard PC (2015) Chemical communication in cichlids: a mini-review. Gen Comp Endocrinol 221:64–74. doi: 10.1016/j.ygcen.2015.01.001 CrossRefPubMedGoogle Scholar
  30. Kenward MG, Roger JH (1997) Small sample interference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997CrossRefPubMedGoogle Scholar
  31. Kodric-Brown A, Sibly RM, Brown JH (2006) The allometry of ornaments and weapons. Proc Natl Acad Sci U S A 103:8733–8738. doi: 10.1073/pnas.0602994103 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Künzler R, Bakker TCM (2001) Female preferences for single and combined traits in computer animated stickleback males. Behav Ecol 12:681–685. doi: 10.1093/beheco/12.6.681 CrossRefGoogle Scholar
  33. Ladich F (2004) Sound production and acoustic communication. In: von der Emde G, Mogdans J, Kapoor BG (eds) The senses of fish: adaptations for the reception of natural stimuli. Kluwer, Dordrecht, pp 210–230CrossRefGoogle Scholar
  34. Ladich F, Schulz-Mirbach T (2013) Hearing in cichlid fishes under noise conditions. PLoS One 8:e57588. doi: 10.1371/journal.pone.0057588 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Longrie N, Poncin P, Denoel M et al (2013) Behaviours associated with acoustic communication in Nile tilapia (Oreochromis niloticus). PLoS One 8:e61467. doi: 10.1371/journal.pone.0061467 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lugli M, Torricelli P, Pavan G, Mainardi D (1997) Sound production during courtship and spawning among freshwater gobiids (pisces, gobiidae). Mar Freshw Behav Physiol 29:109–126. doi: 10.1080/10236249709379003 CrossRefGoogle Scholar
  37. Maruska KP, Ung US, Fernald RD (2012a) The African cichlid fish Astatotilapia burtoni uses acoustic communication for reproduction: sound production, hearing, and behavioral significance. PLoS One 7:e37612. doi: 10.1371/journal.pone.0037612 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Oliveira RF, Almada VC (1996a) Dominance hierarchies and social structure in captive groups of the Mozambique tilapia Oreochromis mossambicus (Teleostei Cichlidae). Ethol Ecol Evol 8:39–55CrossRefGoogle Scholar
  39. Oliveira RF, Almada VC (1998a) Dynamics of social interactions during group formation in males of the cichlid fish Oreochromis mossambicus. Acta Ethol 1:57–70Google Scholar
  40. Oliveira RF, Almada VC (1998b) Mating tactics and male-male courtship in the lek-breeding cichlid Oreochromis mossambicus. J Fish Biol 52:1115–1129. doi: 10.1111/j.1095-8649.1998.tb00959.x Google Scholar
  41. Oliveira RF, Carneiro LA, Canário VM (2005) Behavioural endocrinology: no hormonal response in tied fights. Nature 437:207–208. doi: 10.1038/437207a CrossRefPubMedGoogle Scholar
  42. Oliveira RF, Lopes M, Carneiro LA, Canário VM (2001) Cichlid fish wrestling for dominance induce an androgen surge in male spectators. Nature 409:475. doi: 10.1038/35054128 CrossRefPubMedGoogle Scholar
  43. Ottoni EB (2000) EthoLog 2.2: a tool for the transcription and timing of behavior observation sessions. Behav Res Methods Instrum Comput 32:446–449CrossRefPubMedGoogle Scholar
  44. Ripley JL, Lobel PS (2004) Correlation of acoustic and visual signals in the cichlid fish, Tramitichromis intermedius. Environ Biol Fish 71:389–394. doi: 10.1007/s10641-004-4190-9 CrossRefGoogle Scholar
  45. Rosenthal GG (2000) Design considerations and techniques for constructing video stimuli. Acta Ethol 3:49–54. doi: 10.1007/s102110000024 CrossRefGoogle Scholar
  46. Rosenthal GG (2007) Spatiotemporal dimensions of visual signals in animal communication. Annu Rev Ecol Evol Syst 38:155–178. doi: 10.1146/annurev.ecolsys.38.091206.095745 CrossRefGoogle Scholar
  47. Rowland WJ (1995) Do female stickleback care about male courtship vigour? Manipulation of display tempo using video playback. Behaviour 132:951–961CrossRefGoogle Scholar
  48. Rowland WJ (1999) Studying visual cues in fish behavior: a review of ethological techniques. Environ Biol Fish 56:285–305. doi: 10.1023/A:1007517720723 CrossRefGoogle Scholar
  49. Saverino C, Gerlai R (2008) The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish. Behav Brain Res 191:77–87. doi: 10.1016/j.bbr.2008.03.013 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HDJ, Miyagi R, van der Sluijs I, Schneider MV, Maan ME, Tachida H, Imai H, Okada N (2008) Speciation through sensory drive 10.1007/s10211-017-0252-9 in cichlid fish. Nature 455:620–626.doi: 10.1038/nature07285
  51. Simões JM, Duarte IG, Fonseca PJ et al (2008a) Courtship and agonistic sounds by the cichlid fish Pseudotropheus zebra. J Acoust Soc Am 124:1332–1338. doi: 10.1121/1.2945712 CrossRefGoogle Scholar
  52. Smith CL, Evans CS (2013) A new heuristic for capturing the complexity of multimodal signals. Behav Ecol Sociobiol 67:1389–1398. doi: 10.1007/s00265-013-1490-0 CrossRefGoogle Scholar
  53. Smith AR, van Staaden MJ (2009) The association of visual and acoustic courtship behaviors in African cichlid fishes. Mar Freshw Behav Physiol 42:211–216. doi: 10.1080/10236240903033501 CrossRefGoogle Scholar
  54. Stevens M, Párraga CA, Cuthill IC et al (2007) Using digital photography to study animal coloration. Biol J Linn Soc 90:211–237. doi: 10.1111/j.1095-8312.2007.00725.x CrossRefGoogle Scholar
  55. Schwarz A (1974) The inhibition of aggressive behavior by sound in cichlid fish, Cichlasoma Centrarchus. Z Tierpsychol 35:508–517CrossRefPubMedGoogle Scholar
  56. Thunken T, Bakker TCM, Baldauf SA (2014) “armpit effect” in an African cichlid fish: self-referent kin recognition in mating decisions of male Pelvicachromis taeniatus. Behav Ecol Sociobiol 68:99–104. doi: 10.1007/s00265-013-1626-2 CrossRefGoogle Scholar
  57. Thunken T, Baldauf SA, Kullmann H et al (2011) Size-related inbreeding preference and competitiveness in male Pelvicachromis taeniatus (Cichlidae). Behav Ecol 22:358–362. doi: 10.1093/beheco/arq217 CrossRefGoogle Scholar
  58. Turnell ER, Mann KD, Rosenthal GG, Gerlach G (2003) Mate choice in zebrafish (Danio rerio) analyzed with video-stimulus techniques. Biol Bull 205:225–226CrossRefPubMedGoogle Scholar
  59. van Staaden MJ, Smith AR (2011) Cutting the Gordian knot: complex signaling in African cichlids is more than multimodal. Curr Zool 57:237–252CrossRefGoogle Scholar
  60. Veen T, Ingley SJ, Cui R et al (2013) AnyFish: an open-source software to generate animated fish models for behavioural studies. Evol Ecol Res 15:361–375Google Scholar
  61. Verzijden MN, Van Heusden J, Bouton N et al (2010) Sounds of male Lake Victoria cichlids vary within and between species and affect female mate preferences. Behav Ecol 21:548–555. doi: 10.1093/beheco/arq018 CrossRefGoogle Scholar
  62. Wong BBM, Rosenthal GG (2006) Female disdain for swords in a swordtail fish. Am Nat 167:136–140. doi: 10.1086/498278 CrossRefPubMedGoogle Scholar
  63. Woo KL, Rieucau G (2011) From dummies to animations: a review of computer-animated stimuli used in animal behavior studies. Behav Ecol Sociobiol 65:1671–1685. doi: 10.1007/s00265-011-1226-y CrossRefGoogle Scholar
  64. Yong L, Guo R, Wright DS et al (2013) Correlates of red throat coloration in female stickleback and their potential evolutionary significance. Evol Ecol Res 15:453–472Google Scholar
  65. Zeil J (2000) Depth cues, behavioural context, and natural illumination: some potential limitations of video playback techniques. Acta Ethol 3:39–48. doi: 10.1007/s102110000021 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ISPA 2017

Authors and Affiliations

  • Marie A. Wackermannova
    • 1
    • 2
  • Pavel Horky
    • 2
  • M. Clara P. Amorim
    • 3
  • Paulo J. Fonseca
    • 1
  1. 1.Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  2. 2.Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PraguePraha 6Czech Republic
  3. 3.MARE—Marine and Environmental Sciences CentreISPA-Instituto UniversitárioLisbonPortugal

Personalised recommendations