acta ethologica

, Volume 18, Issue 3, pp 269–282 | Cite as

Habitat associations and behavioural patterns of Symphodus spp. (Pisces: Labridae)

  • Diana Rodrigues
  • Bárbara Horta e Costa
  • Henrique N. Cabral
  • Emanuel J. Gonçalves
Original Paper


The complexity and diversity of physical and biotic habitats are important features influencing the composition of shallow water reef fish assemblages, especially in temperate regions where abundant and diverse algal cover may have an important habitat-forming role. Coastal fish have adapted to these diverse habitats and to the temporal and spatial variations of algal assemblages in different ways. Wrasses are an important group of coastal rocky reef fish which present particular associations to algae in temperate systems. In this study, habitat associations were analysed in three species of wrasses: Symphodus bailloni, Symphodus melops and Symphodus roissali, and their behaviour was recorded. Eight main behavioural categories (comprising a total of 42 different behaviours) were identified: exploring, foraging, resting, agonistic interactions, cleaning, courtship, reproduction and nesting. S. melops occurred on shallower depths and was frequently involved in both intra- and interspecific agonistic interactions with the other wrasse species, although rarely with S. bailloni. S. roissali was associated with microhabitats of smaller size where it frequently hides. Feeding occurred mostly on bedrock habitat when compared to other microhabitats. Foraging and resting showed a marked seasonality in the three wrasses, related to shifts in biotic habitat structure and to changes in the behavioural repertoire during the breeding season.


Wrasses Behaviour Habitat Rocky reefs Algal cover Symphodus spp 



We would like to thank V. Ferreira, H. Folhas and G. Franco for their help in the field and to the BIOMARES project (LIFE06 NAT/P/000192) for the logistic support at the Arrábida Marine Park. B.H.C. was supported by a PhD grant from FCT (SFRH/BD/41262/2007). This study was financed by the Fundação para a Ciência e a Tecnologia (FCT) through the PDCT/MAR/57934/2004 project and the Pluriannual Program (R&D Unit 331/94).


  1. Almada VC, Gonçalves EJ, Oliveira RF, Barata EN (1992) Some features of the territories in the breeding males of the intertidal blenny Lipophrys pholis (Pisces: Blenniidae). J Mar Biol Assoc UK 72:187–197CrossRefGoogle Scholar
  2. Almada VC, Henriques M, Gonçalves EJ (1999) Ecology and behaviour of reef fishes in the temperate north-eastern Atlantic and adjacent waters. In: Almada VC, Oliveira RF, Gonçalves EJ (eds) Behaviour and conservation of littoral fishes. ISPA, Lisboa, pp 33–69Google Scholar
  3. Arenas F, Fernández C, Rico JM, Fernández E, Haya D (1995) Growth and reproductive strategies of Sargassum muticum (Yendo) Fensholt and Cystoseira nodicaulis (Whit.) Roberts. Sci Mar 59:1–8Google Scholar
  4. Barlow GW (1963) Ethology of the Asian teleost Badis badis. II. Motivation and signal value of the colour patterns. Anim Behav 11:97–105CrossRefGoogle Scholar
  5. Bell JD, Harmelin-Vivien ML (1983) Fish fauna of French Mediterranean Posidonia oceanica seagrass meadows. II-Feeding habits. Tethys 11:1–14Google Scholar
  6. Bell JD, Craik GJS, Pollard DA, Russell BC (1985) Estimating length frequency distributions of large reef fish underwater. Coral Reefs 4:41–44CrossRefGoogle Scholar
  7. Caley MJ, St John J (1996) Refuge availability structures assemblages of tropical reef fishes. J Anim Ecol 65:414–428CrossRefGoogle Scholar
  8. Cheminée A, Sala E, Pastor J, Bodilis P, Thiriet P, Mangialajo L, Cottalorda J-M, Francour P (2013) Nursery value of Cystoseira forests for Mediterranean rocky reef fishes. J Exp Mar Biol Ecol 442:70–79CrossRefGoogle Scholar
  9. Choat JH, Ayling AM (1987) The relationship between habitat structure and fish faunas on New Zealand reef. J Exp Mar Biol Ecol 110:257–284CrossRefGoogle Scholar
  10. Clarke KR, Gorley RN (2006) Primer v6: user manual/tutorial. Primer-E PlymouthGoogle Scholar
  11. Costello MJ (1991) Review of the biology of wrasse (Labridae: Pisces) in Northern Europe. Prog Underw Sci 16:29–51Google Scholar
  12. Couch J (1868) A history of the fishes of the British Isles. Groombridge and Sons, LondonGoogle Scholar
  13. Darwall WRT, Costello MJ, Donnelly R, Lysaght S (1992) Implications of life history strategies for a new wrasse fishery. J Fish Biol 41(supplement B):111–123CrossRefGoogle Scholar
  14. Deady S, Fives JM (1995) The diet of corkwing wrasse, Crenilabrus melops, in Galway Bay, Ireland, and in Dinard, France. J Mar Biol Assoc UK 75:635–649CrossRefGoogle Scholar
  15. DeMartini EE, Anderson TW, Friedlander AM, Beets JP (2011) Predator biomass, prey density, and species composition effects on group size in recruit coral reef fishes. Mar Biol 158:2437–2447CrossRefGoogle Scholar
  16. Dixon PS, Irvine LM (1977) Seaweeds of the British Isles. Volume 1. Rhodophyta. Part 1. Introduction, Nemalionales, Gigartinales. British Museum (Natural History), LondonGoogle Scholar
  17. Draisma SGA, Ballesteros E, Rosseau F, Thibaut T (2010) DNA sequence data demonstrate the polyphyly of the genus Cystoseira and other Sargassaceae genera (Phaeophyceae). J Phycol 46:1329–1345CrossRefGoogle Scholar
  18. El Bour M, Ali AI-B, Ktari L (2013) Seaweeds epibionts: biodiversity and potential bioactivities. In: Méndez-Vilas A (ed) Microbial pathogens and strategies for combating them: science, technology and education. Formatex Research Center, Badajoz, Spain. pp 1298-1306Google Scholar
  19. Falace A, Bressan G (2006) Seasonal variations of Cystoseira barbata (Stackhouse) C. Agardh frond architecture. Dev Hydrobiol 183:193–206CrossRefGoogle Scholar
  20. Fitzpatrick BM, Harvey ES, Heyward AJ, Twiggs EJ, Colquhoun J (2012) Habitat specialization in tropical continental shelf demersal fish assemblages. PLoS ONE 7:e39634PubMedCentralCrossRefPubMedGoogle Scholar
  21. Friedlander AM, Parrish JD (1998) Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J Exp Mar Biol Ecol 224:1–30CrossRefGoogle Scholar
  22. Fulton CJ, Belwood DR (2002) Ontogenetic habitat use in labrid fishes: an ecomorphological perspective. MEPS 236:255–262CrossRefGoogle Scholar
  23. García-Rubies A, Macpherson E (1995) Substrate use and temporal pattern of recruitment in juvenile fishes of the Mediterranean litoral. Mar Biol 124:35–42CrossRefGoogle Scholar
  24. Geange SW, Stier AC, Shima JS (2013) Competitive hierarchies among three species of juvenile coral reef fishes. MEPS 472:239–248CrossRefGoogle Scholar
  25. Gonçalves EJ, Henriques M, Almada VC (2003) Use of a temperate reef-fish community to identify priorities in the establishment of a marine protected area. In: Beumer JP, Grant A, Smith DC (eds) Aquatic protected areas: what works best and how do we know? Proceedings of the World Congress Aquatic Protected Areas. Cairns, Australia, pp 261-272Google Scholar
  26. Greenstreet SPR, Rossberg AG, Fox CJ, Le Quesne WJF, Blasdale T, Boulcott P, Mitchell I, Millar C, Moffat CF (2012) Demersal fish biodiversity: species-level indicators and trends-based targets for the Marine Strategy Framework Directive. ICES J Mar Sci 10:1789-1801Google Scholar
  27. Harmelin-Vivien ML, Harmelin JG (1975) Présentation d’une méthod d’evaluation in situ de la faune ichtyologique. Trav Sci Parc Nation Port-Cros 1:47–52Google Scholar
  28. Harmelin-Vivien ML, Harmelin JG, Chauvet C, Duval C, Galzin R, Lejeune P, Barnabe G, Blanc F, Chevalier R, Duclerc J, Lassere G (1985) Evaluation visuelle des peuplemens et populations de poissons: méthodes et problèmes. Rev Ecol (Terre Vie) 40(4):467–539Google Scholar
  29. Helas T, Lejeune P, Michel C, Voss J (1982) A propos de quelques poisons de la Méditerranée. (Symphodus (Crenilabrus) roissali) (Risso 1810). Rev Fr Aquariol 9(1):29–32Google Scholar
  30. Henriques M, Almada VC (1997) Relative importance of cleaning behaviour in Centrolabrus exoletus and other wrasse at Arrábida, Portugal. J Mar Biol Assoc UK 77:891–898CrossRefGoogle Scholar
  31. Henriques M, Gonçalves EJ, Almada VC (1999) The conservation of littoral fish communities: a case study at Arrábida coast (Portugal). In: Almada VC, Oliveira RF, Gonçalves EJ (eds) Behaviour and conservation of littoral fishes. ISPA, Lisboa, pp 473–519Google Scholar
  32. Hilldén NO (1984). Behavioural ecology of the labrid fishes (Teleostei: Labridae) at Tjärnö on the Swedish West Coast. PhD Theses, Department of Zoology, Stockholm UniversityGoogle Scholar
  33. Hixon MA (1991) Predation as a process structuring coral reef fish communities. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, San Diego, pp 475–508CrossRefGoogle Scholar
  34. Hixon MA, Beets JP (1993) Predation, prey refuges, and the structure of coral-reef fish assemblages. Ecol Monogr 63:77–101CrossRefGoogle Scholar
  35. Horta e costa B, Gonçalves L, Gonçalves EJ (2013a) Vessels’ site fidelity and spatio-temporal distribution of artisanal fisheries before the implementation of a temperate multiple-use marine protected area. Fish Res 148:27–37Google Scholar
  36. Horta e Costa B, Erzini K, Caselle JE, Folhas H, Gonçalves EJ (2013b) The reserve effect within a temperate marine protected area in the north-eastern Atlantic (the Arrábida Marine Park, Portugal). Mar Ecol Prog Ser 481:11–24Google Scholar
  37. Jacquemart J, Demoulin V (2008) Comparison of the epiphytic macroflora of Posidonia oceanica leaves in different meadows of the western Mediterranean. Flora Mediterr 18:393–420Google Scholar
  38. Johnson AF, Jenkins SR, Hiddink JG, Hinz H (2013) Linking temperate demersal fish species to habitat: scales, patterns and future directions. Fish Fish 14:256–280CrossRefGoogle Scholar
  39. Jones GP (1984) The influence of habitat and behavioural interactions on the local distribution of the wrasse, Pseudolabrus celidotus. Environ Biol Fish 10:43–58CrossRefGoogle Scholar
  40. Jones KMM (2007) Distribution of behaviours and species interactions within home range contours in five Caribbean reef fish species (Family Labridae). Environ Biol Fish 80:35–49CrossRefGoogle Scholar
  41. Lejeune P (1985) Étude écoéthologique des comportements reproducteurs et sociaux des labridés Méditerranéens des genres Symphodus Rafinesque, 1810, et Coris Lacepede, 1802. Cah Ethol Appl 5(2):1–208Google Scholar
  42. Lejeune P, Voss J (1979) A propos de quelques poissons de la Méditerranée (Symphodus (Symphodus) rostratus) (Bloch 1797). Rev Fr Aquariol 6:55–56Google Scholar
  43. Lejeune P, Voss J (1980) A propos de quelques poissons de la Méditerranée (Symphodus (Symphodus) cinereus) (Bonaterre 1788). Rev Fr Aquariol 1:29–32Google Scholar
  44. Lipej L, Orlando-Bonaca M, Ozebek B, Dulčić J (2009) Nest characteristics of three labrid species in the Gulf of Trieste (northern Adriatic Sea). Acta Adriat 50(2):139–150Google Scholar
  45. Maggs CA, Stegenga H (1999) Red algal exotics on North Sea coasts. Helgoländer Meeresun 52:243–258CrossRefGoogle Scholar
  46. Martin P, Bateson P (2007) Measuring behaviour: an introductory guide. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  47. McCormick MI (1994) Comparison of field methods for measuring surface topography and their associations with a tropical reef fish assemblage. Mar Ecol Prog Ser 112:87–96CrossRefGoogle Scholar
  48. Miller PJ (1996) The functional ecology of small fish: some opportunities and consequences. Symp Zool Soc 69:175–199Google Scholar
  49. Montesanto B, Panayotidis P (2001) The Cystoseira spp. communities from the Aegean Sea (NE Mediterranean). Mediterr Mar Sci 2(1):57–67CrossRefGoogle Scholar
  50. Morton JK, Gladstone W (2011) Spatial, temporal and ontogenetic variation in the association of fishes (family Labridae) with rocky-reef habitats. Mar Freshw Res 62:870–884CrossRefGoogle Scholar
  51. Patton ML, Grove RS, Harman RF (1985) What do natural reefs tell us about designing artificial reefs in Southern California? Bull Mar Sci 37:279–298Google Scholar
  52. Picciulin M, Sebastianutto L, Costantini M, Rocca M, Ferrero EA (2006) Aggressive territorial ethogram of the red-mouthed goby, Gobius cruentatus (Gmelin, 1789). Electron J Ichthyol 2:38–49Google Scholar
  53. Potts GW (1973) Cleaning symbiosis among British fish with special reference to Crenilabrus melops (Labridae). J Mar Biol Assoc UK 53:1–10CrossRefGoogle Scholar
  54. Potts GW (1974) The colouration and its behavioural significance in the corkwing wrasse, Crenilabrus melops. J Mar Biol Assoc UK 54:925–938CrossRefGoogle Scholar
  55. Quignard JP (1966) Recherches sur les Labridae (Poissons Téléostens Perciforms) des côtes européennes. Systématique et Biologie. Naturalia Monspeliensia. Sér Zool 5:7–249Google Scholar
  56. Quignard JP, Pras A (1986) Labridae. In: Whitehead PJP, Bauchot ML, Hureau JC, Nielsen J, Tortonese E (eds) Fishes of the north-Eastern Atlantic and the Mediterranean. UNESCO, Paris, pp 919–942Google Scholar
  57. R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  58. Randall JE, Allen GR, Steene RC (1990) Fishes of the Great Barrier Reef and Coral Sea. University of Hawaii Press, HonoluluGoogle Scholar
  59. Ruitton S, Francour P, Boudouresque CF (2000) Relationships between Algae, Benthic Herbivorous Invertebrates and Fishes in Rocky Sublittoral Communities of a Temperate Sea (Mediterranean). Estuar Coast Shelf Sci 50:217–230CrossRefGoogle Scholar
  60. Sale PF (1974) Mechanisms of co-existence in a guild of territorial fishes at Heron Island. Proceedings of the second International Symposium on Coral Reefs. Great Barrier Reef Committee, Brisbane, Queensland, Australia, pp 193-206Google Scholar
  61. Sale PF (1991) The ecology of fishes on coral reefs. Academic Press, San DiegoGoogle Scholar
  62. Sayer MDJ, Treasurer JW (1996) North European wrasse: identification, distribution and habitat. In: Sayer MDJ, Treasurer JW, Costello MJ (eds) Wrasse: biology and use in aquaculture. Blackwell Scientific, Oxford, pp 3–12Google Scholar
  63. Sayer MDJ, Gibson RN, Atkinson RJA (1995) Growth, diet and condition of goldsinny on the west coast of Scotland. J Fish Biol 46:317–340CrossRefGoogle Scholar
  64. Sayer MDJ, Gibson RN, Atkinson RJA (1996) Growth, diet and condition of corkwing wrasse and rock cook on the west coast of Scotland. J Fish Biol 49:76–94CrossRefGoogle Scholar
  65. Schiel DR (1985) A short-term demographic study of Cystoseira osmundacea (Fucales: Cystoseiraceae) in central California. J Phycol 21:99–106CrossRefGoogle Scholar
  66. Steneck RS, Dethier MN (1994) A functional group approach to the structure of algal dominated communities. OIKOS 69(3):476–498CrossRefGoogle Scholar
  67. Thangstad T (1999) Spatial and temporal distribution of three wrasse species (Pisces: Labridae) in Masfjord, western Norway: habitat association and effects of environmental variables. MSc thesis, University of Bergen, Bergen, NorwayGoogle Scholar
  68. Ticzon VS, Mumby PJ, Samaniego BR, Bejarano-Chavarro S (2012) Microhabitat use of juvenile coral reef fish in Palau. Environ Biol Fish 95(3):355–370CrossRefGoogle Scholar
  69. Treasurer JW (1994) The distribution, age and growth of wrasse (Labridae) in inshore waters of west Scotland. J Fish Biol 44:905–918CrossRefGoogle Scholar
  70. Tuya F, Wenberg T, Thomsen MS (2009) Habitat structure affect abundances of labrid fishes across temperate reefs in south-western Australia. Environ Biol Fish 86:311–319CrossRefGoogle Scholar
  71. Vega Fernández T, D’Anna G, Badalamenti F, Pérez-Ruzafa A (2008) Habitat connectivity as a factor affecting fish assemblages in temperate reefs. Aquat Biol 1:239–248CrossRefGoogle Scholar
  72. Vergés A, Alcoverro T, Ballesteros E (2009) Role of fish herbivory in structuring the vertical distribution of canopy algae Cystoseira spp. in the Mediterranean Sea. Mar Ecol Prog Ser 375:1–11CrossRefGoogle Scholar
  73. Villegas-Rios D, Alonso-Fernandez A, Dominguez-Petit R, Saborido-Rey F (2014) Energy allocation and reproductive investment in a temperate protogynous hermaphrodite, the ballan wrasse Labrus bergylta. J Sea Res 86:76–85CrossRefGoogle Scholar
  74. Voss J (1976) A propos de quelques poissons de la Méditerranée. Le genre Symphodus Rafinesque 1810: Symphodus (Crenilabrus) melops L., Symphodus ocellatus Forskål, 1775. Rev Fr Aquariol 3:93–98Google Scholar
  75. Webb PW (1994) The biology of fish swimming. In: Maddock L, Bone Q, Rayner JMV (eds) Mechanics and physiology of animal swimming. Cambridge University Press, Cambridge, pp 45–62CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ISPA 2015

Authors and Affiliations

  • Diana Rodrigues
    • 1
    • 2
  • Bárbara Horta e Costa
    • 1
    • 3
  • Henrique N. Cabral
    • 2
  • Emanuel J. Gonçalves
    • 1
  1. 1.MARE – Marine and Environmental Sciences Centre and Eco-Ethology Research UnitISPA – Instituto UniversitárioLisboaPortugal
  2. 2.MARE – Marine and Environmental Sciences Centre and Centro de OceanografiaFaculdade de Ciências da Universidade de LisboaLisboaPortugal
  3. 3.Centre of Marine Sciences - CCMARUniversity of AlgarveFaroPortugal

Personalised recommendations