acta ethologica

, Volume 16, Issue 2, pp 105–125 | Cite as

Cryptic confounding compounds: a brief consideration of the influences of anthropogenic contaminants on courtship and mating behavior

  • Tomica D. Blocker
  • Alexander G. Ophir


Contaminants, like pesticides, polychlorinated biphenyls (PCBs), dioxins, and metals, are persistent and ubiquitous and are known to threaten the environment. Traditionally, scientists have considered the direct physiological risks that these contaminants pose. However, scientists have just begun to integrate ethology and toxicology to investigate the effects that contaminants have on behavior. This review considers the potential for contaminant effects on mating behavior. Here, we assess the growing body of research concerning disruptions in sexual differentiation, courtship, sexual receptivity, arousal, and mating. We discuss the implications of these disruptions on conservation efforts and highlight the importance of recognizing the potential for environmental stressors to affect behavioral experimentation. More specifically, we consider the negative implications for anthropogenic contaminants to affect the immediate behavior of animals and their potential to have cascading and/or long-term effects on the behavioral ecology and evolution of populations. Overall, we aim to raise awareness of the confounding influence that contaminants can have and promote caution when interpreting results where the potential for cryptic effects are possible.


Contaminants Courtship Evolution Mating Sexual behavior Toxicants 



We would like to thank Carlos Alonso-Alvarez and two anonymous reviewers for their helpful suggestions and thoughtful comments, which improved the quality of this review. We also thank the National Science Foundation Graduate Research Fellowship Program for supporting TDB.


  1. Aldridge J, Levin E, Seidler F, Slotkin T (2005) Developmental exposure of rats to chlorpyrifos leads to behavioral alterations in adulthood, involving serotonergic mechanisms and resembling animal models of depression. Environ Health Perspect 113(5):527–531. doi: 10.1289/ehp.7867 PubMedCrossRefGoogle Scholar
  2. Alix A, Cortesero AM, Nenon JP, Anger JP (2001) Selectivity assessment of chlorfenvinphos reevaluated by including physiological and behavioral effects on an important beneficial insect. Environ Toxicol Chem 20(11):2530–2536PubMedCrossRefGoogle Scholar
  3. Aller RC (1988) Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structures. In: Blackburn TH, Sorensen J (eds) Nitrogen cycling in coastal marine environments. John Wiley and Sons Ltd., Chichester, NY, pp 301–338Google Scholar
  4. Alonso-Alvarez C, Galvan I (2011) Free radical exposure creates paler carotenoid-based ornaments: a possible interaction in the expression of black and red traits. PLoS One 6(4):e19403. doi: 10.1371/journal.pone.0019403 PubMedCrossRefGoogle Scholar
  5. Alonso-Alvarez C, Perez-Rodriguez L, Ester Ferrero M, Garcia de-Blas E, Casas F, Mougeot F (2012) Adjustment of female reproductive investment according to male carotenoid-based ornamentation in a gallinaceous bird. Behav Ecol Sociobiol 66(5):731–742. doi: 10.1007/s00265-012-1321-8 CrossRefGoogle Scholar
  6. Andersson M (1994) Sexual selection. Princeton University Press, PrincetonGoogle Scholar
  7. Anway MD, Skinner MK (2008) Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease. Reproductive Biomedicine Online 16(1):23–25PubMedCrossRefGoogle Scholar
  8. Anway MD, Rekow SS, Skinner MK (2008) Comparative anti-androgenic actions of vinclozolin and flutamide on transgenerational adult onset disease and spermatogenesis. Reprod Toxicol 26(2):100–106. doi: 10.1016/j.reprotox.2008.07.008 PubMedCrossRefGoogle Scholar
  9. Arellano-Aguilar O, Garcia CM (2008) Exposure to pesticides impairs the expression of fish ornaments reducing the availability of attractive males. Proceedings of the Royal Society B-Biological Sciences 275(1640):1343–1350. doi: 10.1098/rspb.2008.0163 CrossRefGoogle Scholar
  10. Arnold AP, Breedlove SM (1985) Organizational and activational effects of sex steroids on brain and behavior: a reanalysis. Horm Behav 19:469–498PubMedCrossRefGoogle Scholar
  11. Arrhenius F, Hansson S (1993) Food-consumption of larval, young and adult herring and sprat in the Baltic Sea. Mar Ecol Prog Ser 96(2):125–137CrossRefGoogle Scholar
  12. ATSDR (Agency for Toxic Substances and Disease Registry) 1995 Toxicological profile for mirex and chlordecone. US Department of Health and Human Services, Atlanta, GAGoogle Scholar
  13. ATSDR (1997a) Toxicological profile for chlorfenvinphos. US Department of Health and Human Services, Atlanta, GAGoogle Scholar
  14. ATSDR (1997b) Toxicological profile for chlorpyrifos. US Department of Health and Human Services, Atlanta, GAGoogle Scholar
  15. ATSDR (1998) Toxicological profile for chlorinated dibenzo-p-dioxins: draft for public comment, update. US Department of Health and Human Services, Atlanta, GAGoogle Scholar
  16. ATSDR (2000a) Toxicological profile for polychlorinated biphenyls: draft for public comment, update. US Department of Health and Human Services, Atlanta, GAGoogle Scholar
  17. ATSDR (2000b) Toxicological profile for toluene. US Department of Health and Human Services, Atlanta, GAGoogle Scholar
  18. ATSDR (2001) Toxicological profile for methyl parathion. US Department of Health and Human Services, Atlanta, GAGoogle Scholar
  19. ATSDR (2002) Toxicological profile for methoxychlor. US Department of Health and Human Services, Atlanta, GAGoogle Scholar
  20. ATSDR (2003a) Toxicological profile for atrazine: draft for public comment, update. US Department of Health and Human Services, Atlanta, GAGoogle Scholar
  21. ATSDR (2003b) Toxicological profile for malathion: draft for public comment, update. US Department of Health and Human Services, Atlanta, GAGoogle Scholar
  22. ATSDR (2003c) Toxicological profile for pyrethrins and pyrethroids: draft for public comment, update. US Department of Health and Human Services, Atlanta, GAGoogle Scholar
  23. Baatrup E, Junge M (2001) Antiandrogenic pesticides disrupt sexual characteristics in the adult male guppy (Poecilia reticulata). Environ Health Perspect 109(10):1063–1070PubMedCrossRefGoogle Scholar
  24. Baerends GP, Brouwer R, Waterbolk HT (1955) Ethological studies on Lebistes reticulatus (Peters) 1. An analysis of the male courtship pattern. Behavior 8:249–334CrossRefGoogle Scholar
  25. Ball GF, Riters LV, Balthazart J (2002) Neuroendocrinology of song behavior and avian brain plasticity: multiple sites of action of sex steroid hormones. Front Neuroendocrin 23(2):137–178. doi: 10.1006/Frne.2002.0230 CrossRefGoogle Scholar
  26. Barfield RJ, Chen JJ (1977) Activation of estrous behavior in ovariectomized rats by intracerebral implants of estradiol benzoate. Endocrinology 101(6):1716–1725PubMedCrossRefGoogle Scholar
  27. Baum MJ, Vreeburg JT (1973) Copulation in castrated male rats following combined treatment with estradiol and dihydrotestosteron. Science 182(4109):283–285. doi: 10.1126/science.182.4109.283 PubMedCrossRefGoogle Scholar
  28. Bayley M, Junge M, Baatrup E (2002) Exposure of juvenile guppies to three antiandrogens causes demasculinization and a reduced sperm count in adult males. Aquat Toxicol 56(4):227–239PubMedCrossRefGoogle Scholar
  29. Beach FA (1950) The snark was a boojum. Am Psychol 5(4):115–124. doi: 10.1037/h0056510 CrossRefGoogle Scholar
  30. Bell A (2001) Effects of an endocrine disrupter on courtship and aggressive behaviour of male three-spined stickleback, Gasterosteus aculeatus. Anim Behav 62:775–780. doi: 10.1006/anbe.2001.1824 CrossRefGoogle Scholar
  31. Berglund A, Rosenqvist G, Svensson I (1986) Mate choice, fecundity and sexual dimorphism in two pipefish species (Syngnathidae). Behav Ecol Sociobiol 19(4):301–307CrossRefGoogle Scholar
  32. Bertolasio J, Fyfe S, Snyder BW, Davis AM (2011) Neonatal injections of methoxychlor decrease adult rat female reproductive behavior. Neurotoxicology 32(6):809–813. doi: 10.1016/j.neuro.2011.06.007 PubMedCrossRefGoogle Scholar
  33. Birkhoj M, Nellemann C, Jarfelt K, Jacobsen H, Andersen H, Dalgaard M, Vinggaard A (2004) The combined antiandrogenic effects of five commonly used pesticides. Toxicol Appl Pharmacol 201(1):10–20. doi: 10.1016/j.taap.2004.04.016 PubMedCrossRefGoogle Scholar
  34. Blazer VS, Iwanowicz LR, Iwanowicz DD, Smith DR, Young JA, Hedrick JD, Foster SW, Reeser SJ (2007) Intersex (testicular oocytes) in smallmouth bass from the Potomac River and selected nearby drainages. J Aquat Anim Heal 19(4):242–253. doi: 10.1577/h07-031.1 CrossRefGoogle Scholar
  35. Boone M, Semlitsch R (2003) Interactions of bullfrog tadpole predators and an insecticide: predation release and facilitation. Oecologia 137(4):610–616. doi: 10.1007/s00442-003-1394-1 PubMedCrossRefGoogle Scholar
  36. Borg B, Mayer I (1995) Androgens and behaviour in the three-spined stickleback. Behaviour 132:1025–1035CrossRefGoogle Scholar
  37. Bradbury JW, Vehrencamp SL (1998) Principles of animal communication, 1st edn. Sinauer Associates, SunderlandGoogle Scholar
  38. Brenowitz EA, Margoliash D, Nordeen KW (1997) An introduction to birdsong and the avian song system. J Neurobiol 33(5):495–500PubMedCrossRefGoogle Scholar
  39. Brien SE, Heaton JPW, Racz WJ, Adams MA (2000) Effects of an environmental anti-androgen on erectile function in an animal penile erection model. J Urol 163(4):1315–1321. doi: 10.1016/s0022-5347(05)67770-1 PubMedCrossRefGoogle Scholar
  40. Brooks B, Chambliss C, Stanley J, Ramirez A, Banks K, Johnson R, Lewis R (2005) Determination of select antidepressants in fish from an effluent-dominated stream. Environ Toxicol Chem 24(2):464–469. doi: 10.1897/04-081R.1 PubMedCrossRefGoogle Scholar
  41. Brooks A, Gaskell P, Maltby L (2009) Sublethal effects and predator-prey interactions: implications for ecological risk assessment. Environ Toxicol Chem 28(11):2449–2457PubMedCrossRefGoogle Scholar
  42. Cant MA (1998) A model for the evolution of reproductive skew without reproductive suppression. Anim Behav 55:163–169. doi: 10.1006/anbe.1997.0589 PubMedCrossRefGoogle Scholar
  43. Carson R (1962) Silent spring. Houghton Mifflin Co., New YorkGoogle Scholar
  44. Casarett L, Doull J (1975) Toxicology: the basic science of poisons. MacMillan, New YorkGoogle Scholar
  45. Champagne FA, (2012) Interplay between social experiences and the genome: epigenetic consequences for behavior. Advances in Genetics 77:33–57Google Scholar
  46. Christiansen S, Scholze M, Dalgaard M, Vinggaard A, Axelstad M, Kortenkamp A, Hass U (2009) Synergistic disruption of external male sex organ development by a mixture of four antiandrogens. Environ Health Perspect 117(12):1839–1846. doi: 10.1289/ehp.0900689 PubMedGoogle Scholar
  47. Chu S, Metcalfe C (2007) Analysis of paroxetine, fluoxetine and norfluoxetine in fish tissues using pressurized liquid extraction, mixed mode solid phase extraction cleanup and liquid chromatography-tandem mass spectrometry. J Chromatogr 1163(1–2):112–118. doi: 10.1016/j.chroma.2007.06.014 Google Scholar
  48. Clark JT, Jimenez B, Evans SL, Barrow R, Winfree M, Mrotek JJ (1994) Cadmium-induced sexual dysfunction does not involve increased hepatic metabolism of testosterone nor increased circulating levels of corticosterone. Physiol Behav 56(5):975–981PubMedCrossRefGoogle Scholar
  49. Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury - Current exposures and clinical manifestations. N Engl J Med 349 (18):1731–1737. doi: 10.1056/NEJMra022471 Google Scholar
  50. Clements WH, Rohr JR (2009) Community responses to contaminants: using basic ecological principles to predict ecotoxicological effects. Environ Toxicol Chem 28(9):1789–1800PubMedCrossRefGoogle Scholar
  51. Clotfelter E, Bell A, Levering K (2004) The role of animal behaviour in the study of endocrine-disrupting chemicals. Anim Behav 68:665–676. doi: 10.1016/j.anbehav.2004.05.004 CrossRefGoogle Scholar
  52. Colborn T, Saal FSV, Soto AM (1993) Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 101(5):378–384PubMedCrossRefGoogle Scholar
  53. Cordier S (2008) Evidence for a role of paternal exposures in developmental toxicity. Basic & Clinical Pharmacology & Toxicology 102(2):176–181. doi: 10.1111/j.1742-7843.2007.00162.x CrossRefGoogle Scholar
  54. Cox C (2004) Glyphosate herbicide factsheet. Journal of Pesticide Reform 24(4):10–15Google Scholar
  55. Crews D (2010) Epigenetics, brain, behavior, and the environment. Horm-Int J Endocrino 9(1):41–50Google Scholar
  56. Crews D, Moore M (1986) Evolution of mechanisms controlling mating behavior. Science 231:121–125PubMedCrossRefGoogle Scholar
  57. Crews D, Gore AC, Hsu TS, Dangleben NL, Spinetta M, Schallert T, Anway MD, Skinner MK (2007) Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci U S A 104 (14):5942–5946. doi: 10.1073/pnas.0610410104 Google Scholar
  58. Csoka AB, Szyf M (2009) Epigenetic side-effects of common pharmaceuticals: a potential new field in medicine and pharmacology. Medical Hypotheses 73(5):770–780. doi: 10.1016/j.mehy.2008.10.039 PubMedCrossRefGoogle Scholar
  59. Cullen LK (1996) Medetomidine sedation in dogs and cats: a review of its pharmacology, antagonism and dose. Br Vet J 152(5):519–535. doi: 10.1016/s0007-1935(96)80005-4
  60. Curtis JT, Hood AN, Chen Y, Cobb GP, Wallace DR (2010) Chronic metals ingestion by prairie voles produces sex-specific deficits in social behavior: an animal model of autism. Behav Brain Res 213(1):42–49. doi: 10.1016/j.bbr.2010.04.028 PubMedCrossRefGoogle Scholar
  61. Dahlstrom M, Martensson LGE, Jonsson PR, Arnebrant T, Elwing H (2000) Surface active adrenoceptor compounds prevent the settlement of cyprid larvae of Balanus improvisus. Biofouling 16:191–203Google Scholar
  62. Daughton C, Ternes T (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938. doi: 10.2307/3434573 PubMedCrossRefGoogle Scholar
  63. Dauwe T, Eens M (2008) Melanin- and carotenoid-dependent signals of great tits (Parus major) relate differently to metal pollution. Naturwissenschaften 95(10):969–973. doi: 10.1007/s00114-008-0400-1 PubMedCrossRefGoogle Scholar
  64. De Perera TB, Garcia CM (2003) Amarillo fish (Girardinichthys multiradiatus) use visual landmarks to orient in space. Ethology 109 (4):341-350Google Scholar
  65. De Silva P, Samayawardhena LA (2005) Effects of chlorpyrifos on reproductive performances of guppy (Poecilia reticulata). Chemosphere 58(9):1293–1299. doi: 10.1016/j.chemosphere.2004.10.030 PubMedCrossRefGoogle Scholar
  66. Deng J, Liu CS, Yu LQ, Zhou BS (2010) Chronic exposure to environmental levels of tribromophenol impairs zebrafish reproduction. Toxicol Appl Pharmacol 243(1):87–95. doi: 10.1016/j.taap.2009.11.016 PubMedCrossRefGoogle Scholar
  67. Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364CrossRefGoogle Scholar
  68. DeVoogd TJ, Lauay C (2001) Emerging biopsychology of the avian song system. In: Blass E (ed) Handbook of behavioral neurobiology, vol 13. Kluwer Academic, New York, pp 357–392Google Scholar
  69. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr Rev 30(4):293–342. doi: 10.1210/Er.2009-0002 PubMedCrossRefGoogle Scholar
  70. Dodds EC, Lawson W (1936) Synthetic oestrogenic agents without the phenanthrene nucleus. Nature 137:996CrossRefGoogle Scholar
  71. Edwards DA, Pfeifle JK (1983) Hormonal-control of receptivity, proceptivity and sexual motivation. Physiol Behav 30(3):437–443PubMedCrossRefGoogle Scholar
  72. Eeva T, Sillanpaa S, Salminen J, Nikkinen L, Tuominen A, Toivonen E, Pihlaja K, Lehikoinen E (2008) Environmental pollution affects the plumage color of great tit nestlings through carotenoid availability. EcoHealth 5(3):328–337. doi: 10.1007/s10393-008-0184-y PubMedCrossRefGoogle Scholar
  73. Eibl-Eibesfeldt I (1970) Ethology: the biology of behavior. Holt, Rinehart & Winston Inc, New YorkGoogle Scholar
  74. Eliyahu D, Applebaum S, Rafaeli A (2003) Moth sex-pheromone biosynthesis is inhibited by the herbicide diclofop. Pest Biochem Physiol 77(2):75–81. doi: 10.1016/s0048-3575(03)00101-9 CrossRefGoogle Scholar
  75. Emlen ST, Oring LW (1977) Ecology, sexual selection, and evolution of mating systems. Science 197(4300):215–223PubMedCrossRefGoogle Scholar
  76. Engell MD, Godwin J, Young LJ, Vandenbergh JG (2006) Perinatal exposure to endocrine disrupting compounds alters behavior and brain in the female pine vole. Neurotoxicol Teratol 28(1):103–110. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  77. Environmental Protection Agency (EPA) (1991) Reregistration eligibility documen inorgic nitrate/nitrite (sodium and potassium nitrates), List D, Case 4052Google Scholar
  78. EPA (2000a) Prevention, pesticides and toxic substances: fenitrothion facts. Environmental Protection Agency, Washington, DCGoogle Scholar
  79. EPA (2000b) Prevention, pesticides and toxic substances: reregistration eligibility decision facts, Diclofop-methylGoogle Scholar
  80. EPA (2000c) Prevention, pesticides and toxic substances: reregistration eligibility decision facts, vinclozolin. Environmental Protection Agency, Washington, DCGoogle Scholar
  81. EPA (2007) Fenarimol summary document registration review: initial docket. Environmental Protection Agency, Washington, DCGoogle Scholar
  82. EPA (2009) Glyphosate summary document registration review: initial docket. Environmental Protection Agency, Washington, DCGoogle Scholar
  83. EPA (2010) Carbaryl summary document registration review: initial docket. Environmental Protection Agency, Washington, DCGoogle Scholar
  84. Eroschenko VP, Amstislavsky SY, Schwabel H, Ingermann RL (2002) Altered behaviors in male mice, male quail, and salamander larvae following early exposures to the estrogenic pesticide methoxychlor. Neurotoxicol Teratol 24(1):29–36PubMedCrossRefGoogle Scholar
  85. Erskine MS (1989) Solicitation behavior in the estrous female rat—a review. Horm Behav 23(4):473–502. doi: 10.1016/0018-506x(89)90037-8 PubMedCrossRefGoogle Scholar
  86. Fischer C, Fredriksson A, Eriksson P (2008) Neonatal co-exposure to low doses of an ortho-PCB (PCB 153) and methyl mercury exacerbate defective developmental neurobehavior in mice. Toxicology 244(2–3):157–165. doi: 10.1016/j.tox.2007.11.006 PubMedCrossRefGoogle Scholar
  87. Flaherty CM, Dodson SI (2005) Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 61(2):200–207. doi: 10.1016/j.chemosphere.2005.02.016 PubMedCrossRefGoogle Scholar
  88. Fleeger J, Carman K, Nisbet R (2003) Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317(1–3):207–233. doi: 10.1016/S0048-9697(03)00141-4 PubMedCrossRefGoogle Scholar
  89. Ford A, Martins I, Fernandes T (2007) Population level effects of intersexuality in the marine environment. Sci Total Environ 374(1):102–111. doi: 10.1016/j.scitotenv.2006.12.046 PubMedCrossRefGoogle Scholar
  90. Fort DJ, Thomas JH, Rogers RL, Noll A, Spaulding CD, Guiney PD, Weeks JA (2004) Evaluation of the developmental and reproductive toxicity of methoxychlor using an anuran (Xenopus tropicalis) chronic exposure model. Toxicol Sci 81(2):443–453. doi: 10.1093/toxsci/kfh230 PubMedCrossRefGoogle Scholar
  91. Frederick P, Jayasena N (2011) Altered pairing behaviour and reproductive success in white ibises exposed to environmentally relevant concentrations of methylmercury. Proceedings of the Royal Society B-Biological Sciences 278(1713):1851–1857. doi: 10.1098/rspb.2010.2189 CrossRefGoogle Scholar
  92. Friberg L, Elinder C, Kjellstrom T, Nordberg G (1986) Cadmium and health: a toxicological and epidemiological appraisal, effects and response. CRC Press, Boca Raton, FlGoogle Scholar
  93. Fry D, Toone C (1981) DDT-induced feminization of gull embryos. Science 213(4510):922–924. doi: 10.1126/science.7256288 PubMedCrossRefGoogle Scholar
  94. Frye C, Bo E, Calamandrei G, Calza L, Dessi-Fulgheri F, Fernandez M, Fusani L, Kah O, Kajta M, Le Page Y, Patisaul H, Venerosi A, Wojtowicz A, Panzica G (2012) Endocrine disrupters: a review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. J Neuroendocrinol 24(1):144–159. doi: 10.1111/j.1365-2826.2011.02229.x PubMedCrossRefGoogle Scholar
  95. Gagne F, Blaise C, Pellerin J, Pelletier E, Strand J (2006) Health status of Mya arenaria bivalves collected from contaminated sites in Canada (Saguenay Fjord) and Denmark (Odense Fjord) during their reproductive period. Ecotoxicol Environ Saf 64(3):348–361. doi: 10.1016/j.ecoenv.2005.04.007 PubMedCrossRefGoogle Scholar
  96. Galvan I, Alonso-Alvarez C (2009) The expression of melanin-based plumage is separately modulated by exogenous oxidative stress and a melanocortin. Proceedings of the Royal Society B-Biological Sciences 276(1670):3089–3097. doi: 10.1098/rspb.2009.0774 CrossRefGoogle Scholar
  97. Garamszegi LZ, Eens M (2004) Brain space for a learned task: strong intraspecific evidence for neural correlates of singing behavior in songbirds. Brain Res Rev 44(2–3):187–193. doi: 10.1016/j.brainresrev.2003.12.001 PubMedCrossRefGoogle Scholar
  98. Gibson R, Smith M, Spary C, Tyler C, Hill E (2005) Mixtures of estrogenic contaminants in bile of fish exposed to wastewater treatment works effluents. Environ Sci Technol 39(8):2461–2471. doi: 10.1021/es048892g PubMedCrossRefGoogle Scholar
  99. Gillooly J, Ophir A (2010) The energetic basis of acoustic communication. Proceedings of the Royal Society B-Biological Sciences 277(1686):1325–1331. doi: 10.1098/rspb.2009.2134 CrossRefGoogle Scholar
  100. Gorissen L, Snoeijs T, Van Duyse E, Eens M (2005) Heavy metal pollution affects dawn singing behaviour in a small passerine bird. Oecologia 145(3):504–509PubMedCrossRefGoogle Scholar
  101. Gray LE, Ostby JS (1995) In-utero 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters reproductive morphology and function in female rat offspring. Toxicol Appl Pharmacol 133(2):285–294PubMedCrossRefGoogle Scholar
  102. Gray GD, Smith ER, Davidson JM (1980) Hormonal-regulation of penile erection in castrated male rats. Physiol Behav 24(3):463–468. doi: 10.1016/0031-9384(80)90237-1 PubMedCrossRefGoogle Scholar
  103. Gray L, Ostby J, Ferrell J, Rehnberg G, Linder R, Cooper R, Goldman J, Slott V, Laskey J (1989) A dose-response analysis of methoxychlor-induced alterations of reproductive development and function in the rat. Fundamental and Applied Toxicology 12(1):92–108. doi: 10.1016/0272-0590(89)90065-1 PubMedCrossRefGoogle Scholar
  104. Grue CE, Gibert PL, Seeley ME (1997) Neurophysiological and behavioral changes in non-target wildlife exposed to organophosphate and carbamate pesticides: thermoregulation, food consumption, and reproduction. Am Zool 37(4):369–388Google Scholar
  105. Guillette LJ, Gross TS, Masson GR, Matter JM, Percival HF, Woodward AR (1994) Developmental abnormalities of the gonad and abnormal sex-hormone concentrations in juvenile alligators from contaminated and control lakes in Florida. Environ Health Perspect 102(8):680–688PubMedCrossRefGoogle Scholar
  106. Guillette LJ, Crain DA, Rooney AA, Pickford DB (1995) Organization versus activation-the role of endocrine-disrupting contaminants (EDCs) during embryonic-development in wildlife. Environ Health Perspect 103:157–164PubMedGoogle Scholar
  107. Haegele M, Hudson R (1977) Reduction of courship behavior induced by DDE in male ringed turtle doves. Wilson Bulletin 89(4):593–601Google Scholar
  108. Hahn ME, Karchner SI, Shapiro MA, Perera SA (1997) Molecular evolution of two vertebrate aryl hydrocarbon (dioxin) receptors (AHR1 and AHR2) and the PAS family. Proc Natl Acad Sci U S A 94(25):13743–13748PubMedCrossRefGoogle Scholar
  109. Hallinger KK, Zabransky DJ, Kazmer KA, Cristol DA (2010) Birdsong differs between mercury-polluted and reference sites. Auk 127(1):156–161CrossRefGoogle Scholar
  110. Hayes TB (2004) There is no denying this: defusing the confusion about atrazine. Bioscience 54(12):1138–1149CrossRefGoogle Scholar
  111. Hayes TB, Collins A, Lee M, Mendoza M, Noriega N, Stuart AA, Vonk A (2002) Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc Natl Acad Sci U S A 99(8):5476–5480. doi: 10.1073/Pnas.082121499 PubMedCrossRefGoogle Scholar
  112. Hayes T, Haston K, Tsui M, Hoang A, Haeffele C, Vonk A (2003) Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): laboratory and field evidence. Environ Health Perspect 111(4):568–575. doi: 10.1289/Ehp.5932 PubMedCrossRefGoogle Scholar
  113. Hayes TB, Khoury V, Narayan A, Nazir M, Park A, Brown T, Adame L, Chan E, Buchholz D, Stueve T, Gallipeau S (2010) Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proc Natl Acad Sci U S A 107(10):4612–4617. doi: 10.1073/pnas.0909519107 PubMedCrossRefGoogle Scholar
  114. Hayes TB, Anderson LL, Beasley VR, de Solla SR, Iguchi T, Ingraham H, Kestemont P, Kniewald J, Kniewald Z, Langlois VS, Luque EH, Mccoy KA, Munoz-de-Toro M, Oka T, Oliveira CA, Orton F, Ruby S, Suzawa M, Tavera-Mendoza LE, Trudeau VL, Victor-Costa AB, Willingham E (2011) Demasculinization and feminization of male gonads by atrazine: consistent effects across vertebrate classes. J Steroid Biochem 127(1–2):64–73. doi: 10.1016/J.Jsbmb.2011.03.015 Google Scholar
  115. Heaton JPW, Varrin SJ (1994) Effects of castration and exogenous testosterone supplementation in an animal-model of penile erection. J Urol 151(3):797–800PubMedGoogle Scholar
  116. Henry T, Black M (2008) Acute and chronic toxicity of fluoxetine (selective serotonin reuptake inhibitor) in western mosquitofish. Arch Environ Contam Toxicol 54(2):325–330. doi: 10.1007/s00244-007-9018-0 PubMedCrossRefGoogle Scholar
  117. Hinck J, Blazer V, Schmitt C, Papoulias D, Tillitt D (2009) Widespread occurrence of intersex in black basses (Micropterus spp.) from US rivers, 1995–2004. Aquat Toxicol 95(1):60–70. doi: 10.1016/j.aquatox.2009.08.001 PubMedCrossRefGoogle Scholar
  118. Hogan NS, Duarte P, Wade MG, Lean DRS, Trudeau VL (2008) Estrogenic exposure affects metamorphosis and alters sex ratios in the northern leopard frog (Rana pipiens): identifying critically vulnerable periods of development. Gen Comp Endocrinol 156(3):515–523. doi: 10.1016/j.ygcen.2008.03.011 PubMedCrossRefGoogle Scholar
  119. Hoogesteijn AL, Kollias GV, Quimby FW, De Caprio AP, Winkler DW, DeVoogd TJ (2008) Development of a brain nucleus involved in song production in zebra finches (Taeniopygia guttata) is disrupted by Aroclor 1248. Environ Toxicol Chem 27(10):2071–2075PubMedCrossRefGoogle Scholar
  120. Hoshina Y, Takeo T, Nakano K, Sato T, Sakuma Y (1994) Axon-sparing lesion of the preoptic area enhances receptivity and diminishes proceptivity among components of female rat sexual-behavior. Behav Brain Res 61(2):197–204PubMedCrossRefGoogle Scholar
  121. Houtman C, Van Oostveen A, Brouwer A, Lamoree M, Legler J (2004) Identification of estrogenic compounds in fish bile using bioassay-directed fractionation. Environ Sci Technol 38(23):6415–6423. doi: 10.1021/es049750p PubMedCrossRefGoogle Scholar
  122. Howdeshell K, Hotchkiss A, Thayer K, Vandenbergh J, vom Saal F (1999) Environmental toxins—exposure to bisphenol A advances puberty. Nature 401(6755):763–764PubMedCrossRefGoogle Scholar
  123. Huang Y, Zhu LY, Liu GX (2006) The effects of bis(tributyltin) oxide on the development, reproduction and sex ratio of calanoid copepod Pseudodiaptomus marinus. Estuarine Coastal Shelf Sci 69(1–2):147–152. doi: 10.1016/j.ecss.2006.04.010 CrossRefGoogle Scholar
  124. Hued A, Oberhofer S, Bistoni M (2012) Exposure to a commercial glyphosate formulation (Roundup (R)) alters normal gill and liver histology and affects male sexual activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes). Arch Environ Contam Toxicol 62(1):107–117. doi: 10.1007/s00244-011-9686-7 PubMedCrossRefGoogle Scholar
  125. Ikeda M, Tamura M, Yamashita J, Suzuki C, Tomita T (2005) Repeated in utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure affects male gonads in offspring, leading to sex ratio changes in F-2 progeny. Toxicol Appl Pharmacol 206(3):351–355. doi: 10.1016/j.taap.2004.11.019 PubMedCrossRefGoogle Scholar
  126. Ishihara K, Warita K, Tanida T, Sugawara T, Kitagawa H, Hoshi N (2007) Does paternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) affect the sex ratio of offspring? J Vet Med Sci 69(4):347–352. doi: 10.1292/jvms.69.347 PubMedCrossRefGoogle Scholar
  127. Iwaniuk AN, Koperski DT, Cheng KM, Elliott JE, Smith LK, Wilson LK, Wylie DRW (2006) The effects of environmental exposure to DDT on the brain of a songbird: changes in structures associated with mating and song. Behav Brain Res 173(1):1–10. doi: 10.1016/j.bbr.2006.05.026 PubMedCrossRefGoogle Scholar
  128. Jacobsen P, Christiansen S, Boberg J, Nellemann C, Hass U (2010) Combined exposure to endocrine disrupting pesticides impairs parturition, causes pup mortality and affects sexual differentiation in rats. Int J Androl 33(2):434–441. doi: 10.1111/j.1365-2605.2009.01046.x PubMedCrossRefGoogle Scholar
  129. Jacobson T, Sundelin B (2006) Reproductive effects of the endocrine disruptor fenarimol on a baltic amphipod Monoporeia affinis. Environ Toxicol Chem 25(4):1126–1131PubMedCrossRefGoogle Scholar
  130. Jarfelt K, Dalgaard M, Hass U, Borch J, Jacobsen H, Ladefoged O (2005) Antiandrogenic effects in male rats perinatally exposed to a mixture of di(2-ethylhexyl) phthalate and di(2-ethylhexyl) adipate. Reprod Toxicol 19(4):505–515. doi: 10.1016/j.reprotox.2004.11.005 PubMedCrossRefGoogle Scholar
  131. Jayasena N, Frederick P, Larkin I (2011) Endocrine disruption in white ibises (Eudocimus albus) caused by exposure to environmentally relevant levels of methylmercury. Aquat Toxicol 105(3–4):321–327. doi: 10.1016/j.aquatox.2011.07.003 PubMedCrossRefGoogle Scholar
  132. Johnstone RA, Cant MA (1999a) Reproductive skew and indiscriminate infanticide. Anim Behav 57:243–249. doi: 10.1006/anbe.1998.0952 PubMedCrossRefGoogle Scholar
  133. Johnstone RA, Cant MA (1999b) Reproductive skew and the threat of eviction: a new perspective. P Roy Soc Lond B Bio 266(1416):275–279CrossRefGoogle Scholar
  134. Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8(9–10):1865–1879. doi: 10.1089/ars.2006.8.1865 PubMedCrossRefGoogle Scholar
  135. Jones AG, Avise JC (1997) Microsatellite analysis of maternity and the mating system in the Gulf pipefish Syngnathus scovelli, a species with male pregnancy and sex-role reversal. Mol Ecol 6(3):203–213PubMedCrossRefGoogle Scholar
  136. Jones AG, Walker D, Avise JC (2001) Genetic evidence for extreme polyandry and extraordinary sex-role reversal in a pipefish. P Roy Soc Lond B Bio 268(1485):2531–2535. doi: 10.1098/Rspb.2001.1841 CrossRefGoogle Scholar
  137. Katsiadaki I, Scott AP, Mayer I (2002) The potential of the three-spined stickleback (Gasterosteus aculeatus L.) as a combined biomarker for oestrogens and androgens in European waters. Mar Environ Res 54(3–5):725–728PubMedCrossRefGoogle Scholar
  138. Kawata M (1985) Roles of steroid hormones and their receptors in structural organization in the nervous system. Neurosci Res 24:1–46CrossRefGoogle Scholar
  139. Keller L, Reeve HK (1994) Partitioning of reproduction in animal societies. Trends Ecol Evol 9:98–102PubMedCrossRefGoogle Scholar
  140. Kettlewell HBD (1955) Selection experiments on industrial melanism in the Lepidoptera. Heredity 9:321–342CrossRefGoogle Scholar
  141. Kidd K, Blanchfield P, Mills K, Palace V, Evans R, Lazorchak J, Flick R (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci U S A 104(21):8897–8901. doi: 10.1073/pnas.0609568104 PubMedCrossRefGoogle Scholar
  142. Kirby M, Allen Y, Dyer R, Feist S, Katsiadaki I, Matthiessen P, Scott A, Smith A, Stentiford G, Thain J, Thomas K, Tolhurst L, Waldock M (2004) Surveys of plasma vitellogenin and intersex in male flounder (Platichthys flesus) as measures of endocrine disruption by estrogenic contamination in United Kingdom estuaries: temporal trends, 1996 to 2001. Environ Toxicol Chem 23(3):748–758. doi: 10.1897/03-166 PubMedCrossRefGoogle Scholar
  143. Klassen C (2001) Casarett & Doull's toxicology: the basic science of poisons, 6th edn. McGraw-Hill, New YorkGoogle Scholar
  144. Kokko H, Johnstone RA (1999) Social queuing in animal societies: a dynamic model of reproductive skew. P Roy Soc Lond B Bio 266(1419):571–578CrossRefGoogle Scholar
  145. Krang AS (2007) Naphthalene disrupts pheromone induced mate search in the amphipod Corophium volutator (Pallas). Aquat Toxicol 85(1):9–18. doi: 10.1016/j.aquatox.2007.07.012 PubMedCrossRefGoogle Scholar
  146. Krang A, Dahstrom M (2006) Effects of a candidate antifouling compound (medetomidine) on pheromone induced mate search in the amphipod Corophium volutator. Mar Pollut Bull 52(12):1776–1783. doi: 10.1016/j.marpolbul.2006.09.015 PubMedCrossRefGoogle Scholar
  147. Kristensen T, Baatrup E, Bayley M (2005) 17 alpha-ethinylestradiol reduces the competitive reproductive fitness of the male guppy (Poecilia reticulata). Biol Reprod 72(1):150–156. doi: 10.1095/biolreprod.104.033001 PubMedCrossRefGoogle Scholar
  148. Kuiken T, Bennett PM, Allchin CR, Kirkwood JK, Baker JR, Lockyer CH, Walton MJ, Sheldrick MC (1994) PCBs, cause of death and body condition in harbor porpoises (Phocoena-phocoena) from British waters. Aquat Toxicol 28(1–2):13–28. doi: 10.1016/0166-445x(94)90017-5 CrossRefGoogle Scholar
  149. Kuiper GGJM, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg P, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139(10):4252–4263PubMedCrossRefGoogle Scholar
  150. Laessig SA, Auger AP, McCarthy MM, Silbergeld EK (2007) Effects of prenatal chlordecone on sexually differentiated behavior in adult rats. Neurotoxicol Teratol 29(2):255–263. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  151. LaFiandra EM, Babbitt KJ, Sower SA (2008) Effects of atrazine on anuran development are altered by the presence of a nonlethal predator. J Toxicol Env Health Part A 71(8):505–511. doi: 10.1080/15287390801907442 CrossRefGoogle Scholar
  152. Lange R, Hutchinson TH, Croudace CP, Siegmund F, Schweinfurth H, Hampe P, Panter GH, Sumpter JP (2001) Effects of the synthetic estrogen 17 alpha-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environ Toxicol Chem 20(6):1216–1227PubMedGoogle Scholar
  153. Lasota JA, Dybas RA (1991) Avermectins, a novel class of compounds: implication for use in arthropod pest-control Annu Rev Entomol 36:91–117. doi: 10.1146/annurev.ento.36.1.91 Google Scholar
  154. Lingappa S, Basavanagoud K, Kulkarni KA, Patil RS, Kambrekar DN (2004) Threat to vegetable prouction by Diamondback moth ad its management strategies. In: Disease management of fruits and vegetables, vol 1. Kluwer, Norwell, pp. 357–396Google Scholar
  155. Lopes C, Charles S, Vollat B, Garric J (2009) Toxicity of ivermectin on cladocerans: comparison of toxic effects on Daphnia and Ceriodaphnia species. Environ Toxicol Chem 28(10):2160–2166PubMedCrossRefGoogle Scholar
  156. Lye C, Bentley M, Galloway T (2008) Effects of 4-nonylphenol on the endocrine system of the shore crab, Carcinus maenas. Environ Toxicol 23(3):309–318. doi: 10.1002/tox.20344 PubMedCrossRefGoogle Scholar
  157. Madsen EL, Mann CL, Bilotta SE (1996) Oxygen limitations and aging as explanations for the field persistence of naphthalene in coal tar-contaminated surface sediments. Environ Toxicol Chem 15(11):1876–1882CrossRefGoogle Scholar
  158. McCoy KA, Bortnick LJ, Campbell CM, Hamlin HJ, Guillette LJ, St Mary CM (2008) Agriculture alters gonadal form and function in the toad Bufo marinus. Environ Health Perspect 116(11):1526–1532. doi: 10.1289/ehp.11536 PubMedCrossRefGoogle Scholar
  159. McDonald P, Beyer C, Newton F, Brien B, Baker R, Tan HS, Sampson C, Kitching P, Greenhil R, Pritchar D (1970) Failure of 5alpha-dihdrotestosterone to initiate sexual behaviour in castrated male rat. Nature 227(5261):964. doi: 10.1038/227964a0 Google Scholar
  160. Meisel R, Sachs B (1994) The physiology of male sexual behavior. In: Knobil E, Neil JD (eds) The physiology of reproduction, 2nd edn. Raven, New YorkGoogle Scholar
  161. Michael RP, Zumpe D, Bonsall RW (1990) Estradiol administration and the sexual activity of castrated rhesus monkeys (Macaca mulatta). Horm Behav 24(1):71–88. doi: 10.1016/0018-506x(90)90028-v PubMedCrossRefGoogle Scholar
  162. Moniz AC, Cruz-Casallas PE, Salzgeber SA, Varoli FMF, Spinosa HS, Bernardi MM (2005) Behavioral and endocrine changes induced by perinatal fenvalerate exposure in female rats. Neurotoxicol Teratol 27(4):609–614. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  163. Monje L, Varayoud J, Munoz-de-Toro M, Luque EH, Ramos JG (2009) Neonatal exposure to bisphenol A alters estrogen-dependent mechanisms governing sexual behavior in the adult female rat. Reprod Toxicol 28(4):435–442. doi: 10.1016/j.reprotox.2009.06.012 PubMedCrossRefGoogle Scholar
  164. Moore A, Waring C (2001) The effects of a synthetic pyrethroid pesticide on some aspects of reproduction in Atlantic salmon (Salmo salar L.). Aquat Toxicol 52(1):1–12. doi: 10.1016/S0166-445X(00)00133-8 PubMedCrossRefGoogle Scholar
  165. Musatov S, Chen W, Pfaff DW, Kaplitt MG, Ogawa S (2006) RNAi-mediated silencing of estrogen receptor in the ventromedial nucleus of hypothalamus abolishes female sexual behaviors. Proc Natl Acad Sci U S A 103(27):10456–10460. doi: 10.1073/pnas.0603045103 PubMedCrossRefGoogle Scholar
  166. Nash JP, Kime DE, Van der Ven LTM, Wester PW, Brion F, Maack G, Stahlschmidt-Allner P, Tyler CR (2004) Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environ Health Perspect 112(17):1725–1733. doi: 10.1289/ehp.7209 PubMedCrossRefGoogle Scholar
  167. National Pesticide Information Center (2000) Captan: General fact sheet. Oregon State University, Corvallis, ORGoogle Scholar
  168. National Toxicology Program (2011) Report on carcinogens: Dichlorodiphenyltrichlorethane, Twelfth ed. US Department of Health and Human Services, Atlanta, GAGoogle Scholar
  169. Nelson DA, Khanna H, Marler P (2001) Learning by instruction or selection: implications for patterns of geographic variation in bird song. Behaviour 138:1137–1160CrossRefGoogle Scholar
  170. Norris KJ (1990) Female choice and the evolution of the conspicuous plumage coloration of monogamous male great tits. Behavioral Ecology and Sociobiology 26(2):129–138CrossRefGoogle Scholar
  171. Oduma JA, Wango EO, Makawiti DW, Einerjensen N, Oduorokelo D (1995) Effects of graded doses of the pesticide heptachlor on body-weight, mating success, estrous-cycle, gestation length and litter size in laboratory rats. Comp Biochem Physiol C-Pharmacol Toxicol Endocrinol 110(2):221–227PubMedCrossRefGoogle Scholar
  172. Ogawa S, Olazabal UE, Parhar IS, Pfaff DW (1994) Effects of intrahypothalamic administration of antisense DNA for progesterone-receptor messenger RNA on reproductive behavior and progesterone-receptor immunoreactivity in female rats. J Neurosci 14(3):1766–1774PubMedGoogle Scholar
  173. Oka T, Tooi O, Mitsui N, Miyahara M, Ohnishi Y, Takase M, Kashiwagi A, Shinkai T, Santo N, Iguchi T (2008) Effect of atrazine on metamorphosis and sexual differentiation in Xenopus laevis. Aquat Toxicol 87(4):215–226. doi: 10.1016/j.aquatox.2008.02.009 PubMedCrossRefGoogle Scholar
  174. Ottinger MA, Wu JM, Hazelton JL, Abdelnabi MA, Thompson N, Quinn ML, Donoghue D, Schenck F, Ruscio M, Beavers J, Jaber M (2005) Assessing the consequences of the pesticide methoxychlor: neuroendocrine and behavioral measures as indicators of biological impact of an estrogenic environmental chemical. Brain Res Bull 65(3):199–209. doi: 10.1016/j.brainresbull.2004.11.019 PubMedCrossRefGoogle Scholar
  175. Palanza P, Morellini F, Parmigiani S, vom Saal FS (2002) Ethological methods to study the effects of maternal exposure to estrogenic endocrine disrupters—a study with methoxychlor. Neurotoxicol Teratol 24(1):55–69. doi: 10.1016/s0892-0362(01)00191-x PubMedCrossRefGoogle Scholar
  176. Pandey S (1969) Effects of hypophysectomy on the testis and secondary sex characters of the adult guppy Poecilia reticulata Peters. Can J Zoolog 47(5):775CrossRefGoogle Scholar
  177. Partridge C, Boettcher A, Jones AG (2010) Short-term exposure to a synthetic estrogen disrupts mating dynamics in a pipefish. Horm Behav 58(5):800–807. doi: 10.1016/j.yhbeh.2010.08.002 PubMedCrossRefGoogle Scholar
  178. Patisaul H, Adewale H (2009) Long-term effects of environmental endocrine disruptors on reproductive physiology and behavior. Front Behav Neurosci 3. doi: 10.3389/neuro.08.010.2009
  179. Pestana JLT, Loureiro S, Baird DJ, Soares A (2009) Fear and loathing in the benthos: responses of aquatic insect larvae to the pesticide imidacloprid in the presence of chemical signals of predation risk. Aquat Toxicol 93(2–3):138–149. doi: 10.1016/j.aquatox.2009.04.008 PubMedCrossRefGoogle Scholar
  180. Pleim ET, Brown TJ, Maclusky NJ, Etgen AM, Barfield RJ (1989) Dilute estradiol implants and progestin receptor induction in the ventromedial nucleus of the hypothalamus—correlation with receptive behavior in female rats. Endocrinology 124(4):1807–1812PubMedCrossRefGoogle Scholar
  181. Pocock VJ, Sales GD, Wilson CA, Milligan SR (2002) Effects of perinatal octylphenol on ultrasound vocalization, behavior and reproductive physiology in rats. Physiol Behav 76(4–5):645–653PubMedCrossRefGoogle Scholar
  182. Quinn MJ, Summitt CL, Ottinger MA (2008) Consequences of in ovo exposure to p,p′-DDE on reproductive development and function in Japanese quail. Horm Behav 53(1):249–253. doi: 10.1016/j.yhbeh.2007.10.004 PubMedCrossRefGoogle Scholar
  183. Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32PubMedCrossRefGoogle Scholar
  184. Riddell DJ, Culp JM, Baird DJ (2005) Behavioral responses to sublethal cadmium exposure within an experimental aquatic food web. Environ Toxicol Chem 24(2):431–441. doi: 10.1897/04-026r.1 PubMedCrossRefGoogle Scholar
  185. Rubin BS, Barfield RJ (1983) Progesterone in the ventromedial hypothalamus facilitates estrous behavior in ovariectomized, estrogen-primed rats. Endocrinology 113:797–804PubMedCrossRefGoogle Scholar
  186. Rudegeair T (1975) The reproductive behavior and ecology of the white ibis (Eudocimus albus). University of Florida, GainesvilleGoogle Scholar
  187. Safe S (1990) Polychlorinated biphenyls (PCBs), dibenzo-para-dioxins (PCDDs), dibenzofurans (PCDfs), and related compounds- Environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs) Crit Rev Toxicol 21(1):51–88. doi: 10.3109/10408449009089873
  188. Safe SH (1994) Polychlorinated-biphenyls (PCBs)—environmental-impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol 24(2):87–149PubMedCrossRefGoogle Scholar
  189. Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20(6):243–248. doi: 10.1016/s0167-7799(02)01943-1 PubMedCrossRefGoogle Scholar
  190. Sandheinrich MB, Miller KM (2006) Effects of dietary methylmercury on reproductive behavior of fathead minnows (Pimephales promelas). Environ Toxicol Chem 25(11):3053-3057Google Scholar
  191. Sanchez W, Sremski W, Piccini B, Palluel O, Maillot-Marechal E, Betoulle S, Jaffal A, Ait-Aissa S, Brion F, Thybaud E, Hinfray N, Porcher JM (2011) Adverse effects in wild fish living downstream from pharmaceutical manufacture discharges. Environ Int 37(8):1342–1348. doi: 10.1016/j.envint.2011.06.002 PubMedCrossRefGoogle Scholar
  192. Schantz SL, Ferguson SA, Bowman RE (1992) Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on behavior of monkeys in peer groups. Neurotoxicol Teratol 14(6):433–446PubMedCrossRefGoogle Scholar
  193. Schantz SL, Gasior DM, Polverejan E, McCaffry RJ, Sweeney AM, Humphrey HEB, Gardiner JC (2001) Impairments of memory and learning in older adults exposed to polychlorinated biphenyl via consumption of great lakes fish. Environ Health Perspect 109(6):605–611PubMedCrossRefGoogle Scholar
  194. Schug T, Janesick A, Blumberg B, Heindel J (2011) Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem 127(3–5):204–215. doi: 10.1016/j.jsbmb.2011.08.007 Google Scholar
  195. Sebire M, Scott AP, Tyler CR, Cresswell J, Hodgson DJ, Morris S, Sanders MB, Stebbing PD, Katsiadaki I (2009) The organophosphorous pesticide, fenitrothion, acts as an anti-androgen and alters reproductive behavior of the male three-spined stickleback, Gasterosteus aculeatus. Ecotoxicology 18(1):122–133. doi: 10.1007/s10646-008-0265-2 PubMedCrossRefGoogle Scholar
  196. Sebire M, Katsiadaki I, Taylor N, Maack G, Tyler C (2011) Short-term exposure to a treated sewage effluent alters reproductive behaviour in the three-spined stickleback (Gasterosteus aculeatus). Aquat Toxicol 105(1–2):78–88. doi: 10.1016/j.aquatox.2011.05.014 PubMedCrossRefGoogle Scholar
  197. Secondi J, Hinot E, Djalout Z, Sourice S, Jadas-Hecart A (2009) Realistic nitrate concentration alters the expression of sexual traits and olfactory male attractiveness in newts. Funct Ecol 23(4):800–808. doi: 10.1111/j.1365-2435.2009.01558.x CrossRefGoogle Scholar
  198. Seuront L (2011) Hydrocarbon contamination decreases mating success in a marine planktonic copepod. PLoS One 6(10):10.1371/journal.pone.0026283CrossRefGoogle Scholar
  199. Shuster SM, Wade MJ (2003) Mating systems and strategies. Princeton University Press, PrincetonGoogle Scholar
  200. Spencer KA, Buchanan KL, Goldsmith AR, Catchpole CK (2003) Song as an honest signal of developmental stress in the zebra finch (Taeniopygia guttata). Horm Behav 44(2):132–139. doi: 10.1016/S0018-506x(03)00124-7 PubMedCrossRefGoogle Scholar
  201. Tierney K, Baldwin D, Hara T, Ross P, Scholz N, Kennedy C (2010) Olfactory toxicity in fishes. Aquat Toxicol 96(1):2–26. doi: 10.1016/j.aquatox.2009.09.019 PubMedCrossRefGoogle Scholar
  202. Tietjen WJ (2006) Pesticides affect the mating behavior of Rabidosa rabida (Araneae, Lycosidae). J Arachnol 34(2):285–288CrossRefGoogle Scholar
  203. Tinbergen N (1952) The curious behavior of the stickleback. Sci Am 187:22–26. doi: 10.1038/scientificamerican1252-22 CrossRefGoogle Scholar
  204. Tinbergen N (1958) Curious naturalists. Basic Books, New YorkGoogle Scholar
  205. Truss M, Beato M (1993) Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. Endocr Rev 14:459–479PubMedGoogle Scholar
  206. Tsai MJ, Omalley BW (1994) Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63:451–486PubMedCrossRefGoogle Scholar
  207. Tuomainen U, Candolin U (2011) Behavioural responses to human-induced environmental change. Biol Rev 86(3):640–657. doi: 10.1111/j.1469-185X.2010.00164.x PubMedCrossRefGoogle Scholar
  208. Uphouse L (1986) Single injection with chlordecone reduces behavioral receptivity and fertility of adult-rats. Neurobehavioral Toxicology and Teratology 8(2):121–126PubMedGoogle Scholar
  209. Vandenberg L, Maffini M, Sonnenschein C, Rubin B, Soto A (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30(1):75–95. doi: 10.1210/er.2008-0021 PubMedCrossRefGoogle Scholar
  210. Vehrencamp SL (1979) The roles of individual, kin and group selection in the evolution of sociality. In: Marler P, Vandenbergh J (eds) Social behaviour and communication. Plenum, New York, pp 351–394CrossRefGoogle Scholar
  211. Venerosi A, Calarnandrei G, Ricceri L (2006) A social recognition test for female mice reveals behavioral effects of developmental chlorpyrifos exposure. Neurotoxicol Teratol 28(4):466–471. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  212. Weis JS, Smith GM, Zhou T (1999) Altered predator prey behavior in polluted environments: implications for fish conservation. Environ Biol Fishes 55(1–2):43–51. doi: 10.1023/a:1007496528012 CrossRefGoogle Scholar
  213. Wilhelm D, Palmer S, Koopman P (2007) Sex determination and gonadal developments in mammals. Physiol Rev 87:1–28PubMedCrossRefGoogle Scholar
  214. Wisniewski AB, Cernetich A, Gearhart JP, Klein SL (2005) Perinatal exposure to genistein alters reproductive development and aggressive behavior in male mice. Physiol Behav 84(2):327–334. doi: 10.1016/j.physbeh.2004.12.008 PubMedCrossRefGoogle Scholar
  215. Wolff JO (2003) Laboratory studies with rodents: facts or artifacts? Bioscience 53(4):421–427. doi: 10.1641/0006-3568(2003)053[0421:lswrfo];2 CrossRefGoogle Scholar
  216. World Health Organization (2006) Concise International Chemical Assessment Document 70: Heptachlor. Geneva, SwitzerlandGoogle Scholar
  217. Woodruff T, Carlson A, Schwartz J, Giudice L (2008) Proceedings of the summit on environmental challenges to reproductive health and fertility: executive summary. Fertil Steril 89(2):281–300. doi: 10.1016/j.fertnstert.2007.10.002 PubMedCrossRefGoogle Scholar
  218. Woodward AR, Percival HF, Jennings ML, Moore CT (1993) Low clutch viability of American alligators on Lake Apopka. Florida Scientist 56(1):52–62Google Scholar
  219. Wu MV, Manoli DS, Fraser EJ, Coats JK, Tollkuhn J, Honda SI, Harada N, Shah NM (2009) Estrogen masculinizes neural pathways and sex-specific behaviors. Cell 139(1):61–72PubMedCrossRefGoogle Scholar
  220. Wyatt TD (2003) Pheromones and animal behavior: communication by smell and taste. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  221. Xu Z, Cao GC, Dong SL (2010) Changes of sex pheromone communication systems associated with tebufenozide and abamectin resistance in diamondback moth, Plutella xylostella (L.). J Chem Ecol 36(5):526–534. doi: 10.1007/s10886-010-9785-3 PubMedCrossRefGoogle Scholar
  222. Ying GG, Williams B, Kookana R (2002) Environmental fate of alkylphenols and alkylphenol ethoxylates - a review. Environment International 28(3):215–226. doi: 10.1016/s0160-4120(02)00017-x
  223. Zahavi A, Zahavi A (1997) The handicap principle: a missing piece of Darwin's puzzle. Oxford University Press, LondonGoogle Scholar
  224. Zala S, Penn D (2004) Abnormal behaviours induced by chemical pollution: a review of the evidence and new challenges. Anim Behav 68:649–664. doi: 10.1016/j.anbehav.2004.01.005 CrossRefGoogle Scholar
  225. Zama AM, Uzumcu M (2010) Epigenetic effects of endocrine-disrupting chemicals on female reproduction: an ovarian perspective. Front Neuroendocrin 31(4):420–439. doi: 10.1016/j.yfrne.2010.06.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and ISPA 2012

Authors and Affiliations

  1. 1.Department of ZoologyOklahoma State UniversityStillwaterUSA

Personalised recommendations