Context-aware solutions for asthma condition management: a survey

  • Mario Quinde
  • Nawaz Khan
  • Juan Carlos Augusto
  • Aléchia van Wyk
  • Jill Stewart
Long Paper


The evolution of information technology has allowed the development of ubiquitous, user-centred, and context-aware solutions. This article considers existing context-aware systems supporting asthma management with the aim of describing their main benefits and opportunities for improvement. To achieve this, the main concepts related to asthma and context awareness are explained before describing and analysing the existing context-aware systems aiding asthma. The survey shows that the concept of personalisation is the key when developing context-aware solutions supporting asthma management because of the high level of heterogeneity of this condition. Hence, the benefits and challenges of context-aware systems supporting asthma management are strongly linked to contextual Just-In-Time information of internal and external factors related to a person and the heterogeneity it represents.


Context awareness Asthma Healthcare virtual assistance Just-In-Time information 



  1. 1.
    Dobrescu, R., Purcarea, V.: Impact of information technology on the quality of health services. In: Borangiu, T., Thomas, A., Trentesaux, D. (eds.) Service Orientation in Holonic and Multi-Agent Manufacturing Control. Studies in Computational Intelligence, vol. 402. Springer, Berlin (2012). CrossRefGoogle Scholar
  2. 2.
    Lee, J., Choi, J.: Texas hospitals with higher health information technology expenditures have higher revenue: a longitudinal data analysis using a generalized estimating equation model. BMC Health Serv. Res. 16, 117–124 (2016). CrossRefGoogle Scholar
  3. 3.
    Lee, J.: The impact of health information technology on disparity of process of care. Int. J. Equity Health 14, 34–40 (2015). CrossRefGoogle Scholar
  4. 4.
    Leahy, D., Sykora, V.: Automation of decision making in drug discovery. Drug Discov. Today Technol. 10(3), 437–441 (2013). CrossRefGoogle Scholar
  5. 5.
    Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform. 3(2), 119–131 (2016). CrossRefGoogle Scholar
  6. 6.
    Mantovani, E., Quinn, P.: mHealth and data protection—the letter and the spirit of consent legal requirements. Int. Rev. Law Comput. Technol. 28(2), 222–236 (2014). CrossRefGoogle Scholar
  7. 7.
    World Health Organization, mHealth: New horizons for health through mobile technologies, Global Observatory for eHealth series, 3. (2011). ​Accessed 22 Aug 2016
  8. 8.
    Augusto, J.C., Callaghan, V., Cook, D., Kameas, A., Satoh, I.: Intelligent environments: a manifesto. Hum. Centric Comput. Inf. Sci. 3(1), 1–18 (2013). CrossRefGoogle Scholar
  9. 9.
    Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better understanding of context and context-awareness. In: Gellersen, H.W. (ed.) Handheld and Ubiquitous Computing. Lecture Notes in Computer Science, vol. 1707. Springer, Berlin (1999). CrossRefGoogle Scholar
  10. 10.
    Dey, A.K.: Understanding and using context. Pers. Ubiquitous Comput. 5(1), 47 (2001). CrossRefGoogle Scholar
  11. 11.
    Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Contextaware computing for the Internet of Things: a survey. IEEE Commun. Surv. Tutor. 16(1), 414–454 (2014). CrossRefGoogle Scholar
  12. 12.
    Donsa, K., Spat, S., Beck, P., Pieber, T.R., Holzinger, A.: Towards personalization of diabetes therapy using computerized decision support and machine learning: some open problems and challenges. In: Holzinger, A., Rcker, C., Ziefle, M. (eds.) Smart Health. Lecture Notes in Computer Science, vol. 8700. Springer, Cham (2015). CrossRefGoogle Scholar
  13. 13.
    Belk, M., Germanakos, P., Fidas, C., Holzinger, A., Samaras, G.: Towards the personalization of CAPTCHA mechanisms based on individual differences in cognitive processing. Human Factors in Computing and Informatics, Lecture Notes in Computer Science, LNCS 7946, pp. 409–426. Springer, Berlin (2013). CrossRefGoogle Scholar
  14. 14.
    Acampora, G., Cook, D., Rashidi, P.: A survey on ambient intelligence in healthcare. Proc. IEEE Inst. Electr. Electron. Eng. 101(12), 2470–2494 (2013). CrossRefGoogle Scholar
  15. 15.
    Ziefle, M., Himmel, S., Holzinger, A.: How usage context shapes evaluation and adoption in different technologies. In: Rebelo, F., Soares, M.M. (eds.) Adv. Usability Eval. Part II, pp. 2812–2821. CRC Press, Boca Raton (2012)Google Scholar
  16. 16.
    Viswanathan, H., Chen, B., Pompili, D.: Research challenges in computation communication and context awareness for ubiquitous healthcare. IEEE Commun. Mag. 50(5), 92–99 (2012). CrossRefGoogle Scholar
  17. 17.
    AlMotiri, S.H., Khan, M.A., AlGhamdi, M.A.: Mobile Health (m-health)System in the context of IoT. In: 4th International Conference on Future Internet of Things and Cloud Workshops, pp. 39-42 (2016).
  18. 18.
    Hird, N., Ghosh, S., Kitano, H.: Digital health revolution: perfect storm or perfect opportunity for pharmaceutical R&D? Drug Discov. Today 21(6), 900–911 (2016). CrossRefGoogle Scholar
  19. 19.
    European Commission: Internet of Things: an early reality of the Future Internet—Workshop Report, Information Society and Media Directorate General, Networked Enterprise & RFID Unit (D4). (2009)
  20. 20.
    Alegre, U., Augusto, J.C., Clark, T.: Engineering context-aware systems and applications: a survey. J. Syst. Softw. 117, 55–83 (2016). CrossRefGoogle Scholar
  21. 21.
    Khan, N., Alegre, U., Kramer, D., Augusto, J.C.: Is context-aware reasoning = case-based reasoning? In: Brzillon, P., Turner, R., Penco, C. (eds.) Modeling and Using Context. CONTEXT 2017. Lecture Notes in Computer Science, vol. 10257. Springer, Cham (2017). CrossRefGoogle Scholar
  22. 22.
    Waze Mobile Ltd.: Free community-based mapping, traffic & navigation app—about us. Accessed 21 Jul 2017
  23. 23.
    Google Inc.: About—Google Maps. Accessed 21 Jul 2017
  24. 24.
    Currie, E., Harvey, P.H., Daryanani, P., Augusto, J.C., Arif, R., Ali, A.: An investigation into the efficacy of avatar-based systems for student advice. EAI Endorsed Trans. e-Learn. 16(11), e5 (2016). CrossRefGoogle Scholar
  25. 25.
    Wahlster, W., et al.: The shopping experience of tomorrow: human-centered and resource-adaptive. In: Crocker, M., Siekmann, J. (eds.) Resource-Adaptive Cognitive Processes. Cognitive Technologies. Springer, Berlin (2010). CrossRefGoogle Scholar
  26. 26.
    Souza, G.C.: Supply chain analytics. Bus. Horiz. 57, 595–605 (2014). CrossRefGoogle Scholar
  27. 27.
    Wang, G., Gunasekarana, A., Ngai, E.W.T., Papadopoulos, T.: Big data analytics in logistics and supply chain management: certain investigations for research and applications. Int. J. Prod. Econ. 176, 98–110 (2016). CrossRefGoogle Scholar
  28. 28.
    Teixeira, A., Ferreira, F., Almeida, N., Silva, S., Rosa, A.F., Pereira, J.C., Vieira, D.: Design and development of Medication Assistant: older adults centred design to go beyond simple medication reminders. Univers. Access Inf. Soc. 16(3), 545–560 (2017). CrossRefGoogle Scholar
  29. 29.
    Tavares, J., Barbosa, J., Cardoso, I., Costa, C., Yamin, A., Real, R.: Hefestos: an intelligent system applied to ubiquitous accessibility. Univers. Access Inf. Soc. 15(4), 589–607 (2016). CrossRefGoogle Scholar
  30. 30.
    Holzinger, A., Rcker, C., Ziefle, M.: From smart health to smart hospitals. In: Holzinger, A., Rcker, C., Ziefle, M. (eds.) Smart Health. Lecture Notes in Computer Science, vol. 8700. Springer, Cham (2015). CrossRefGoogle Scholar
  31. 31.
    Paredes, H., Fonseca, B., Cabo, M., Pereira, T., Fernandes, F.: SOSPhone: a mobile application for emergency calls. Univers. Access Inf. Soc. 13(3), 277–290 (2014). CrossRefGoogle Scholar
  32. 32.
    Harvey, A., Brand, A., Holgate, S.T., Kristiansen, L.V., Lehrach, H., Palotie, A., Prainsack, B.: The future of technologies for personalised medicine. New Biotechnol. 29(6), 625633 (2012). CrossRefGoogle Scholar
  33. 33.
    Horgan, D., Romo, M., Torbett, R., Brand, A.: European data-driven economy: a lighthouse initiative on personalised medicine. Health Policy Technol 3(4), 226–233 (2014). CrossRefGoogle Scholar
  34. 34.
    Samples, C., Ni, Z., Shaw, R.J.: Nursing and mHealth. Int. J. Nurs. Sci. 1(4), 330–333 (2014). CrossRefGoogle Scholar
  35. 35.
    Isakovic, M., Cijan, J., Sedlar, U., Volk, M., Beter, J.: The role of mHealth applications in societal and social challenges of the future. In: Proceedings of the 12th International Conference on Information Technology—New Generations, pp. 561-566 (2015).
  36. 36.
    Pijnenburg, M.W., Szefler, S.: Personalized medicine in children with asthma. Paediatr. Respir. Rev. 16(2), 101–107 (2015). CrossRefGoogle Scholar
  37. 37.
    Al-khassaweneh, M., Mustafa, S.B., Abu-ekteish, F.: Asthma attack monitoring and diagnosis: a proposed system. In: 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, pp. 763-767 (2012).
  38. 38.
    Chatzitofis, A., Monaghan, D., Mitchell, E., Honohan, F., Zarpalas, D., O’Connor, N.E., Daras, P.: HeartHealth: a cardiovascular disease home-based rehabilitation system. Procedia Comput. Sci. 6, 340–347 (2015). CrossRefGoogle Scholar
  39. 39.
    Wagner, S., Toftegaard, T. S., Bertelsen, O. W.: Increased data quality in home blood pressure monitoring through context awareness. In: 5th International Conference on Pervasive Computing Technologies for Healthcare Pervasive Health and Workshops, pp. 234-237 (2011).
  40. 40.
    Chang, S., Chiang, R., Wu, S.: A context-aware, interactive m-health system for diabetics. IT Prof. 18(3), 14–22 (2016). CrossRefGoogle Scholar
  41. 41.
    Liu, M., Huang, M.C.: Asthma pattern identification via continuous diaphragm motion monitoring. IEEE Trans. Multi Scale Comput. Syst. 1(2), 76–84 (2015). CrossRefGoogle Scholar
  42. 42.
    Natarajan, S., Castner, J., Titus, A.H.: Smart phone-based peak expiratory flow meter. Electron. Lett. 52(11), 904–905 (2016). CrossRefGoogle Scholar
  43. 43.
    Huckvale, K., Morrison, C., Ouyang, J., Ghaghda, A., Car, J.: The evolution of mobile apps for asthma: an updated systematic assessment of content and tools. BMC Med. 13, 58 (2015). CrossRefGoogle Scholar
  44. 44.
    Osuntogun, A.A., Arriaga, R. I.: Physician usage of technology and opportunities for continuous care management of pediatric asthma patients. In: 4th International Conference on Pervasive Computing Technologies for Healthcare, pp. 1-6 (2010).
  45. 45.
    Yun, T.J., Jeong, H. Y, Lee, H. R, Arriaga, R. I., Abowd, G. D.: Assessing asthma management practices through in-home technology probes. In: 2010 4th International Conference on Pervasive Computing Technologies for Healthcare, pp. 1-9 (2010).
  46. 46.
    Al-Dowaihi, D., Al-Ajlan, M., Al-Zahrani, N., Al-Quwayfili, N., Al-Jwiser, N., Kanjo, E.: mBreath: Asthma monitoring system on the go. In: International Conference on Computer Medical Applications vol. 2013, pp. 5–8 (2013).
  47. 47.
    Uwaoma, C., Mansingh, G.: Towards real-time monitoring and detection of asthma symptoms on resource-constraint mobile device. In: Annual IEEE Consumer Communications and Networking Conference, vol. 2015, pp. 47–52 (2015).
  48. 48.
    Kwan, A.M., Fung, A.G., Jansen, P.A., Schivo, M., Kenyon, N.J., Delplanque, J.P., Davis, C.E.: Personal lung function monitoring devices for asthma patients. IEEE Sens. J. 15(4), 2238–2247 (2015). CrossRefGoogle Scholar
  49. 49.
    Anantharam, P., Banerjee, T., Sheth, A., Thirunarayan, K., Marupudi, S., Sridharan, V., Forbis, S. G.: Knowledge-driven personalized contextual mHealth service for asthma management in children. In: Proceedings 2015 IEEE 3rd International Conference on Mobile Services, pp. 284-291 (2015).
  50. 50.
    Ra, H.-K., Salekin, A., Yoon, H. J., Kim, J., Nirjon, S., Stone, D. J., Kim, S., Lee, J.-M., Son, S. H., Stankovic, J. A.: AsthmaGuide: an ecosystem for asthma monitoring and advice. In: 2016 IEEE Wireless Health, pp. 1–8 (2016).
  51. 51.
    Dieffenderfer, J., Goodell, H., Mills, S., McKnight, M., Yao, S., Lin, F., Beppler, E., Bent, B., Lee, B., Misra, V., Zhu, Y., Oralkan, O., Strohmaier, J., Muth, J., Peden, D., Bozkurt, A.: Low power wearable systems for continuous monitoring of environment and health for chronic respiratory disease. IEEE J. Biomed. Health Inf. 20(5), 1251–1264 (2016). CrossRefGoogle Scholar
  52. 52.
    National Heart Lung and Blood Institute, National Institutes of Health Bethesda: International consensus report on diagnosis and treatment of asthma. Eur. Respir. J. 5, 601–641 (1992)Google Scholar
  53. 53.
    Fernandez, F., Pallis, G.C.: Opportunities and challenges of the Internet of Things for healthcare. In: 4th International Conference on Wireless Mobile Communication and Healthcare, pp. 263–266 (2015)Google Scholar
  54. 54.
    Global initiative for asthma: global strategy for asthma and prevention. (2017). ​Accessed 11 Jun 2017
  55. 55.
    Asthma UK: Annual report and accounts. (2016). Accessed 11 Jun 2017
  56. 56.
    Centers for Disease Control and Prevention: CDC—asthma. (2016). Accessed 12 Jun 2017
  57. 57.
    Waldron, J.: Asthma Care in the Community. Wiley, West Sussex (2007)Google Scholar
  58. 58.
    Hyland, M.: The Origins of Health and Disease. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  59. 59.
    Asthma UK: Understanding asthma. Accessed 10 Jun 2017
  60. 60.
    Asthma Australia: About asthma. Accessed 10 Jun 2017
  61. 61.
    NHS choices: Asthma. Accessed 10 Jun 2017
  62. 62.
    National Asthma Education and Prevention Program, Expert Panel Report 3 (EPR-3): Guidelines for the diagnosis and management of asthma summary report. J. Allergy Clin. Immunol. 120(5), S94–S138 (2007).
  63. 63.
    British Thoracic Society: British guideline on the management of asthma: a national clinical guide. (2016)
  64. 64.
    National Institutes of Health: Guidelines for the Diagnosis and Management of Asthma: summary report. Available from: (2007). Accessed 13 Jun 2017
  65. 65.
    Almunawar, M.N., Anshari, M., Younis, M.Z.: Incorporating customer empowerment in mobile health. Health Policy Technol. 4, 312–319 (2015). CrossRefGoogle Scholar
  66. 66.
    Varshney, U.: Mobile health: four emerging themes of research. Decis. Support Syst. 66, 20–35 (2014). CrossRefGoogle Scholar
  67. 67.
    PulsePoint Foundation: Accessed 18 Aug 2017
  68. 68.
    Kandl, T., Khan, N.: Information integration of drug discovery and clinical studies to support complex queries using an information supply chain framework. J. Softw. 9(5), 1348–1356 (2014)CrossRefGoogle Scholar
  69. 69.
    Varshney, U.: A model for improving quality of decisions in mobile health. Decis. Support Syst. 62, 66–77 (2014). CrossRefGoogle Scholar
  70. 70.
    Office of the Deputy Prime Minister: Housing health and safety rating system: operating guidance. (2006). Accessed 08 Apr 2017
  71. 71.
    Holzinger, A., Plass, M., Holzinger, K., Crisan, G.C., Pintea, C.-M., Palades, V.: A glass-box interactive machine learning approach for solving NP-hard problems with the human-in-the-loop (2017). arXiv:1708.01104
  72. 72.
    Bleser, G., Steffen, D., Reiss, A., Weber, M., Hendeby, G., Fradet, L.: Personalized physical activity monitoring using wearable sensors. In: Holzinger, A., Röcker, C., Ziefle, M. (eds.) Smart Health. Lecture Notes in Computer Science, vol. 8700. Springer, Cham (2015). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Group on Development of Intelligent Environments, Department of Computer ScienceMiddlesex UniversityLondonUK
  2. 2.Departamento de Ingeniería Industrial y de SistemasUniversidad de PiuraPiuraPeru
  3. 3.Department of Natural SciencesMiddlesex UniversityLondonUK

Personalised recommendations