Immersive \(360^{\circ }\) video user experience: impact of different variables in the sense of presence and cybersickness

  • David Narciso
  • Maximino Bessa
  • Miguel Melo
  • António Coelho
  • José Vasconcelos-Raposo
Long Paper
  • 104 Downloads

Abstract

Virtual Reality (VR) has been recently gaining interest from researchers and companies, contributing to the development of the associated technologies that aim to transport its users to a virtual environment by the stimulation of their senses. Technologies such as Head-Mounted Displays (HMD), capable of presenting 360° video in 3D, are becoming affordable and, consequently, more common among the average consumer, potentiating the creation of a market for VR experiences. The purpose of this study is to measure the influence of (a) video format (2D/monoscopic vs 3D/stereoscopic), (b) sound format (2D/stereo vs 3D/spatialized), and (c) gender on users’ sense of presence and cybersickness, while experiencing a VR application using an HMD. Presence and cybersickness were measured using questionnaires as subjective measures. Portuguese versions of the Igroup Presence Questionnaire for presence and the Simulator Sickness Questionnaire for cybersickness were used. Results revealed no statistically significant differences between (a) VIDEO and (b) SOUND variables on both senses of presence and cybersickness. When paired with (a) VIDEO, the independent variable (c) Gender showed significant differences on almost all subscales of presence. Results suggest that the widely acknowledged differences in spatial ability between genders were a major factor contributing to this outcome.

Keywords

User Experience Virtual Reality Presence Cybersickness 360° 3D Video 3D Sound 

Notes

Acknowledgements

This work was supported by the project “TEC4Growth Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01- 0145-FEDER-000020” financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF). The research works were conducted at MASSIVE VR Laboratory, an output of the project REC I/EEI-SII/0360/2012 entitled “MASSIVE - Multimodal Acknowledgeable multiSenSory Immersive Virtual Environments” financed by the European Union (COMPETE, QREN and FEDER).

References

  1. 1.
    Bando, T., Iijima, A., Yano, S.: Visual fatigue caused by stereoscopic images and the search for the requirement to prevent them: a review. Displays 33(2), 76–83 (2012)CrossRefGoogle Scholar
  2. 2.
    Baños, R.M., Botella, C., Alcañiz, M., Liaño, V., Guerrero, B., Rey, B.: Immersion and emotion: their impact on the sense of presence. Cyberpsychol. Behav. 7(6), 734–741 (2004)CrossRefGoogle Scholar
  3. 3.
    Baños, R.M., Botella, C., Rubió, I., Quero, S., García-Palacios, A., Alcañiz, M.: Presence and emotions in virtual environments: the influence of stereoscopy. Cyberpsychol. Behav. 11(1), 1–8 (2008)CrossRefGoogle Scholar
  4. 4.
    Bleumers, L., Van den Broeck, W., Lievens, B., Pierson, J.: Seeing the bigger picture: a user perspective on 360 tv. In: Proceedings of the 10th European Conference on Interactive Tv and Video, ACM, New York, NY, USA, EuroiTV ’12, pp. 115–124, doi: 10.1145/2325616.2325640 (2012)
  5. 5.
    Bose (2017) QuietComfort 15 - acoustic noise cancelling headphones. https://www.bose.com/en_us/support/products/headphones_support/over_ear_headphones_support/qc15.html
  6. 6.
    Bowman, D.A., McMahan, R.P.: Virtual reality: how much immersion is enough? Computer 40(7), 36–43 (2007)CrossRefGoogle Scholar
  7. 7.
    Brinkman, W.P., Hoekstra, A.R., van EGMOND, R.: The effect of 3D audio and other audio techniques on virtual reality experience. IOS Press, Amsterdam (2015)Google Scholar
  8. 8.
    Brislin, R.W.: Back-translation for cross-cultural research. J. Cross Cult. Psychol. 1(3), 185–216 (1970)CrossRefGoogle Scholar
  9. 9.
    Butler, A., Hilliges, O., Izadi, S., Hodges, S., Molyneaux, D., Kim, D., Kong, D.: Vermeer: direct interaction with a 360 viewable 3d display. In: Proceedings of the 24th annual ACM symposium on User interface software and technology, ACM, pp 569–576 (2011)Google Scholar
  10. 10.
    Choy, S.M., Chiu, K.H., Cheng, E., Burnett, I.: 3d fatigue from stereoscopic 3d video displays: comparing objective and subjective tests using electroencephalography. In: TENCON 2015–2015 IEEE Region 10 Conference, IEEE, pp 1–4 (2015)Google Scholar
  11. 11.
    Coluccia, E., Louse, G.: Gender differences in spatial orientation: a review. J. Environ. Psychol. 24(3), 329–340 (2004)CrossRefGoogle Scholar
  12. 12.
    Dicke, C., Aaltonen, V., Billinghurst, M.: Occurrence of simulator sickness in spatial sound spaces and 3d auditory displays. International Conference on Auditory Display (2009)Google Scholar
  13. 13.
    Freeman, J., Lessiter, J.: Here, there and everywhere: the effects of multichannel audio on presence. In: Fourth Annual International Workshop on Presence, Georgia Institute of Technology (2001)Google Scholar
  14. 14.
    Freeman, J., Avons, S.E., Meddis, R., Pearson, D.E., IJsselsteijn, W.: Using behavioral realism to estimate presence: a study of the utility of postural responses to motion stimuli. Presence 9(2), 149–164 (2000)CrossRefGoogle Scholar
  15. 15.
    George, D., Mallery, P.: SPSS for windows step by step: a simple guide and reference, 11.0 Update. Allyn and Bacon (2010)Google Scholar
  16. 16.
    Gross, M., Würmlin, S., Naef, M., Lamboray, E., Spagno, C., Kunz, A., Koller-Meier, E., Svoboda, T., Van Gool, L., Lang, S., et al blue-c: a spatially immersive display and 3d video portal for telepresence. In: ACM Transactions on Graphics (TOG), ACM, vol 22, pp 819–827 (2003)Google Scholar
  17. 17.
    Gunther, R., Kazman, R., MacGregor, C.: Using 3d sound as a navigational aid in virtual environments. Behav. Inform. Technol. 23(6), 435–446 (2004)CrossRefGoogle Scholar
  18. 18.
    Häkkinen, J., Kawai, T., Takatalo, J., Leisti, T., Radun, J., Hirsaho, A., Nyman, G.: Measuring stereoscopic image quality experience with interpretation based quality methodology. In: Electronic Imaging 2008, International Society for Optics and Photonics, pp. 68,081B–68,081B (2008)Google Scholar
  19. 19.
    Hambleton, R., Zenisky, A.L.: Translating and adapting tests for cross-cultural assessments. Cross Cult. Res. Methods Psychol. 46–70 (2011)Google Scholar
  20. 20.
    Hendrix, C., Barfield, W.: The sense of presence within auditory virtual environments. Presence Teleoperators Virtual Environ. 5(3), 290–301 (1996)CrossRefGoogle Scholar
  21. 21.
    Hoffman, M., Gneezy, U., List, J.A.: Nurture affects gender differences in spatial abilities. Proc. Natl. Acad. Sci. 108(36), 14,786–14,788, doi: 10.1073/pnas.1015182108, http://www.pnas.org/content/108/36/14786.abstract, http://www.pnas.org/content/108/36/14786.full.pdf (2011)
  22. 22.
    Hsu, J., Pizlo, Z., Babbs, C., Chelberg, D.M., Delp III, E.J.: Design of studies to test the effectiveness of stereo imaging truth or dare: is stereo viewing really better? In: IS&T/SPIE 1994 International Symposium on Electronic Imaging: Science and Technology, International Society for Optics and Photonics, pp 211–222 (1994)Google Scholar
  23. 23.
    Hubona, G.S., Wheeler, P.N., Shirah, G.W., Brandt, M.: The relative contributions of stereo, lighting, and background scenes in promoting 3d depth visualization. ACM Trans. Comput. Hum. Interact. (TOCHI) 6(3), 214–242 (1999)CrossRefGoogle Scholar
  24. 24.
    IJsselsteijn, W., de Ridder, H., Freeman, J., Avons, S.E., Bouwhuis, D.: Effects of stereoscopic presentation, image motion, and screen size on subjective and objective corroborative measures of presence. Presence 10(3), 298–311 (2001)CrossRefGoogle Scholar
  25. 25.
    IJsselsteijn, W.A., de Ridder, H., Freeman, J., Avons, S.E.: Presence: concept, determinants, and measurement. In: Electronic Imaging, International Society for Optics and Photonics, pp. 520–529 (2000)Google Scholar
  26. 26.
    Juan, M.C., Pérez, D.: Comparison of the levels of presence and anxiety in an acrophobic environment viewed via hmd or cave. Presence 18(3), 232–248 (2009)CrossRefGoogle Scholar
  27. 27.
    Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)CrossRefGoogle Scholar
  28. 28.
    Keshavarz, B., Hecht, H.: Visually induced motion sickness and presence in videogames: the role of sound. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 56. SAGE Publications, pp. 1763–1767 (2012)Google Scholar
  29. 29.
    Kolasinski, E.M.: Simulator sickness in virtual environments. Tech. rep, DTIC Document (1995)Google Scholar
  30. 30.
    Kramer, G.: Sound and communication in virtual reality, communication in the age of virtual reality. pp. 259–276 (1995)Google Scholar
  31. 31.
    Lambooij, M.T., IJsselsteijn, W.A., Heynderickx, I.: Visual discomfort in stereoscopic displays: a review. In: International Society for Optics and Photonics Electronic Imaging 2007, vol. 6490 (2007)Google Scholar
  32. 32.
    Larsson, P., Västfjäll D., Olsson, P., Kleiner, M.: When what you hear is what you see: presence and auditory-visual integration in virtual environments. In: 10th Annual International Workshop on Presence (2007)Google Scholar
  33. 33.
    LaViola, J.J. Jr, Litwiller, T.: Evaluating the benefits of 3d stereo in modern video games. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, New York, NY, USA, CHI ’11, pp. 2345–2354, doi: 10.1145/1978942.1979286, (2011)
  34. 34.
    LaViola Jr., J.J.: A discussion of cybersickness in virtual environments. ACM SIGCHI Bull. 32(1), 47–56 (2000)CrossRefGoogle Scholar
  35. 35.
    Lee, K.M.: Presence, explicated. Commun. Theory 14(1), 27–50 (2004)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Lessiter, J., Freeman, J.: Really hear? the effects of audio quality on presence. In: Fourth Annual International Workshop on Presence, Citeseer (2001)Google Scholar
  37. 37.
    Linn, M.C., Petersen, A.C.: Emergence and characterization of sex differences in spatial ability: a meta-analysis. Child Dev. 1479–1498 (1985)Google Scholar
  38. 38.
    Lombard, M., Ditton, T.: At the heart of it all: the concept of presence. J. Comput. Mediat. Commun. 3(2), (1997a)Google Scholar
  39. 39.
    Lombard, M., Ditton, T.: At the heart of it all: the concept of presence. J. Comput. Mediat. Commun. 3(2), (1997b)Google Scholar
  40. 40.
    McCauley, M.E., Sharkey, T.J.: Cybersickness: perception of self-motion in virtual environments. Presence Teleoperators Virtual Environ. 1(3), 311–318 (1992)CrossRefGoogle Scholar
  41. 41.
    Naqvi, S.A.A., Badruddin, N., Malik, A.S., Hazabbah, W., Abdullah, B.: Does 3d produce more symptoms of visually induced motion sickness? In: 35th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, pp. 6405–6408 (2013)Google Scholar
  42. 42.
    Narayan, M., Waugh, L., Zhang, X., Bafna, P., Bowman, D.: Quantifying the benefits of immersion for collaboration in virtual environments. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, ACM, pp. 78–81 (2005)Google Scholar
  43. 43.
    Nash, E.B., Edwards, G.W., Thompson, J.A., Barfield, W.: A review of presence and performance in virtual environments. Int. J. Hum. Comput. Interact. 12(1), 1–41 (2000)CrossRefGoogle Scholar
  44. 44.
    Oculus Oculus Rift - development kit 2. https://www3.oculus.com/en-us/dk2/ (2017)
  45. 45.
    Palmisano, S.: Consistent stereoscopic information increases the perceived speed of vection in depth. Perception 31(4), 463–480 (2002)CrossRefGoogle Scholar
  46. 46.
    Patel, H., Stefani, O., Sharples, S., Hoffmann, H., Karaseitanidis, I., Amditis, A.: Human centred design of 3-d interaction devices to control virtual environments. Int. J. Hum. Comput. Stud. 64(3), 207–220 (2006)CrossRefGoogle Scholar
  47. 47.
    Presence Research IS (2000) The concept of presence: explication statement. Retrieved on May 5, 2016Google Scholar
  48. 48.
    Raja, D.: The effects of immersion on 3d information visualization. PhD thesis, Virginia Polytechnic Institute and State University (2006)Google Scholar
  49. 49.
    Rand, D., Kizony, R., Feintuch, U., Katz, N., Josman, N., Weiss, P.L.T., et al.: Comparison of two vr platforms for rehabilitation: video capture versus hmd. Presence Teleoperators Virtual Environ. 14(2), 147–160 (2005)CrossRefGoogle Scholar
  50. 50.
    Reason, J.T., Brand, J.J.: Motion Sickness. Academic press, Cambridge (1975)Google Scholar
  51. 51.
    Sarno, D.M.: The effect of stereoscopic (3d) movies on psychological and physiological experiences. PhD thesis, Bridgewater State University (2015)Google Scholar
  52. 52.
    Schild, J., LaViola, J., Masuch, M.: Understanding user experience in stereoscopic 3d games. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, pp. 89–98 (2012)Google Scholar
  53. 53.
    Schubert, T., Friedmann, F., Regenbrecht, H.: The experience of presence: factor analytic insights. Presence 10(3), 266–281 (2001)CrossRefGoogle Scholar
  54. 54.
    Sheridan, T.B.: Musings on telepresence and virtual presence. Presence Teleoperators Virtual Environ. 1(1), 120–126 (1992)CrossRefGoogle Scholar
  55. 55.
    Singer, M.J., Witmer, S. US Army Research Institute. Interim Report (1996)Google Scholar
  56. 56.
    Slater, M.: Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364(1535), 3549–3557 (2009)CrossRefGoogle Scholar
  57. 57.
    Slater, M., Usoh, M., Steed, A.: Depth of presence in virtual environments. Presence Teleoperators Virtual Environ. 3(2), 130–144 (1994)CrossRefGoogle Scholar
  58. 58.
    Slater, M., Linakis, V., Usoh, M., Kooper, R., Street, G.: Immersion, presence, and performance in virtual environments: an experiment with tri-dimensional chess. In: ACM Virtual Reality Software and Technology (VRST), vol. 163. ACM Press New York, NY, p. 72 (1996)Google Scholar
  59. 59.
    Snow, M.P., Williges, R.C.: Empirical models based on free-modulus magnitude estimation of perceived presence in virtual environments. Hum. Factors J. Hum. Factors Ergon. Soc. 40(3), 386–402 (1998)CrossRefGoogle Scholar
  60. 60.
    Takatalo, J., Kawai, T., Kaistinen, J., Nyman, G., Häkkinen, J.: User experience in 3d stereoscopic games. Media Psychol. 14(4), 387–414 (2011)CrossRefGoogle Scholar
  61. 61.
    Tam, W.J., Stelmach, L.B., Corriveau, P.J.: Psychovisual aspects of viewing stereoscopic video sequences. In: Photonics West’98 Electronic Imaging, vol 3295. pp 226–235, doi: 10.1117/12.307169 (1998)
  62. 62.
    Van Baren, J., IJsselsteijn, W.: Measuring presence: A guide to current measurement approaches. Deliverable of the OmniPres project IST-2001-39237 (2004)Google Scholar
  63. 63.
    Vasconcelos-Raposo, J., Bessa, M., Melo, M., Barbosa, L., Rodrigues, R., Teixeira, C.M., Cabral, L., Augusto Sousa, A.: \(ipq\) adaptation and validation of the igroup presence questionnaire in a portuguese sample. Presence Teleoperators Virtual Environ. 25(3), 191–203 (2016)CrossRefGoogle Scholar
  64. 64.
    Västfjäll, D.: The subjective sense of presence, emotion recognition, and experienced emotions in auditory virtual environments. Cyberpsychol. Behav. 6(2), 181–188 (2003)CrossRefGoogle Scholar
  65. 65.
    Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a presence questionnaire. Presence Teleoperators Virtual Environ. 7(3), 225–240 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Universidade de Trás-os-Montes e Alto DouroVila RealPortugal
  2. 2.INESC TECPortoPortugal
  3. 3.Faculdade de Engenharia da Universidade do PortoPortoPortugal

Personalised recommendations