HuMan: an accessible, polymorphic and personalized CAPTCHA interface with preemption feature tailored for persons with visual impairments

Long Paper

Abstract

Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is one of the major security components in the provision of fair web access by differentiating human access from malicious, automated access by bots. Though the CAPTCHA strengthens the security aspect of web access, their accessibility to people with visual impairments has inherent unresolved challenges. This paper presents an accessible CAPTCHA model termed HuMan (human or machine?) which aims at providing an audio-based CAPTCHA for people with visual impairments. The HuMan model incorporates personalization into the CAPTCHA access. The polymorphic nature of resolving the HuMan CAPTCHA facilitates kaleidoscopic behavior in CAPTCHA rendering. The presence of ambient noise and requirement of common sense knowledge to answer the questions presented by HuMan CAPTCHA model makes it friendlier toward human users. The HuMan model has a CAPTCHA preemption feature which enables the user to stop the challenge audio as soon as the answer is identified. The results of experiments conducted on the prototype implementation of HuMan model project the mean success rate of 92.46 % and system usability scale score of 82.44 for persons with visual impairments and 82.63 for sighted users.

Keywords

Web accessibility Accessible CAPTCHA Non-visual access CAPTCHA preemption 

References

  1. 1.
    Baird, H.S., Coates, A.L., Fateman, R.J.: Pessimalprint: a reverse turing test. Int. J. Doc. Anal. Recognit. 5(2–3), 158–163 (2003)CrossRefGoogle Scholar
  2. 2.
    Baird, H.S., Moll, M.A., Wang, S.Y.: Scattertype: a legible but hard-to-segment captcha. In: Eighth International Conference on Document Analysis and Recognition. Proceedings, pp. 935–939. IEEE (2005)Google Scholar
  3. 3.
    Bauwens, B., Evenepoel, F., Engelen, J.: Sgml as an enabling technology for access to digital information by print disabled readers. Comput. Stand. Interfaces 18(1), 55–69 (1996)CrossRefGoogle Scholar
  4. 4.
    Belk, M., Fidas, C., Germanakos, P., Samaras, G.: Do human cognitive differences in information processing affect preference and performance of captcha? Int. J. Hum. Comput. Stud. 84, 1–18 (2015)CrossRefGoogle Scholar
  5. 5.
    Belk, M., Germanakos, P., Fidas, C., Holzinger, A., Samaras, G.: Towards the personalization of CAPTCHA mechanisms based on individual differences in cognitive processing. In: Holzinger, A., Ziefle, M., Hitz, M., Debevc, M. (eds.) Human Factors in Computing and Informatics, Lecture Notes in Computer Science, vol 7946, pp. 409–426. Springer, Berlin (2013)CrossRefGoogle Scholar
  6. 6.
    Berners-Lee, T.: Long live the web. Sci. Am. 303(6), 80–85 (2010)CrossRefGoogle Scholar
  7. 7.
    Bigham, J.P., Cavender, A.C.: Evaluating existing audio captchas and an interface optimized for non-visual use. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1829–1838. ACM (2009)Google Scholar
  8. 8.
    Brooke, J., et al.: Sus-a quick and dirty usability scale. Usability Evalu. Ind. 189(194), 4–7 (1996)Google Scholar
  9. 9.
    Bursztein, E., Bethard, S.: Decaptcha: breaking 75% of ebay audio captchas. In: Proceedings of the 3rd USENIX conference on Offensive technologies, p. 8. USENIX Association (2009)Google Scholar
  10. 10.
    Bursztein, E., Bethard, S., Fabry, C., Mitchell, J.C., Jurafsky, D.: How good are humans at solving captchas? a large scale evaluation. In: 2010 IEEE Symposium on Security and Privacy, pp. 399–413. IEEE (2010)Google Scholar
  11. 11.
    Bursztein, E., Martin, M., Mitchell, J.: Text-based captcha strengths and weaknesses. In: Proceedings of the 18th ACM conference on Computer and communications security, pp. 125–138. ACM (2011)Google Scholar
  12. 12.
    Campbell, D., Stanley, J.: Experimental and quasi-experimental designs for research. In: Gage, N.L. (ed.) Handbook of research on teaching. pp. 171–246. (1966)Google Scholar
  13. 13.
    Chellapilla, K., Larson, K., Simard, P., Czerwinski, M.: Designing human friendly human interaction proofs (hips). In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 711–720. ACM (2005)Google Scholar
  14. 14.
    Converse, T.: CAPTCHA generation as a web service. In: Baird, H.S., Lopresti, D.P. (eds.) Human Interactive Proofs, Lecture Notes in Computer Science, vol 3517, pp. 82–96. Springer, Berlin (2005)CrossRefGoogle Scholar
  15. 15.
    Darejeh, A., Singh, D.: An investigation on ribbon interface design guidelines for people with less computer literacy. Comput. Stand. Interfaces 36(5), 808–820 (2014)CrossRefGoogle Scholar
  16. 16.
    Datta, R., Li, J., Wang, J.Z.: Imagination: a robust image-based captcha generation system. In: Proceedings of the 13th Annual ACM International Conference on Multimedia, pp. 331–334. ACM (2005)Google Scholar
  17. 17.
    Davidson, M., Renaud, K., Li, S.: jCAPTCHA: accessible human validation. In: Miesenberger, K., Fels, D., Archambault, D., Peňáz, P., Zagler, W. (eds.) Computers Helping People with Special Needs, ICCHP 2014. Lecture Notes in Computer Science, vol 8547, pp. 129–136. Springer, Cham (2014)CrossRefGoogle Scholar
  18. 18.
    Elson, J., Douceur, J.R., Howell, J., Saul, J.: Asirra: a captcha that exploits interest-aligned manual image categorization. In: ACM Conference on Computer and Communications Security, pp. 366–374 (2007)Google Scholar
  19. 19.
    Gao, H., Liu, H., Yao, D., Liu, X., Aickelin, U.: An audio captcha to distinguish humans from computers. In: 2010 Third International Symposium on Electronic Commerce and Security (ISECS), pp. 265–269. IEEE (2010)Google Scholar
  20. 20.
    Gossweiler, R., Kamvar, M., Baluja, S.: What’s up captcha?: a captcha based on image orientation. In: Proceedings of the 18th International Conference on World Wide Web, pp. 841–850. ACM (2009)Google Scholar
  21. 21.
    Goswami, G., Powell, B.M., Vatsa, M., Singh, R., Noore, A.: Facedcaptcha: face detection based color image CAPTCHA. Future Gener. Comput. Syst. 31, 59–68 (2014). doi: 10.1016/j.future.2012.08.013. http://www.sciencedirect.com/science/article/pii/S0167739X12001690. Special Section: Advances in Computer Supported Collaboration: Systems and Technologies
  22. 22.
    Goswami, G., Singh, R., Vatsa, M., Powell, B., Noore, A.: Face recognition captcha. In: 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 412–417. IEEE (2012)Google Scholar
  23. 23.
    Holman, J., Lazar, J., Feng, J.H., D’Arcy, J.: Developing usable captchas for blind users. In: Proceedings of the 9th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 245–246. ACM (2007)Google Scholar
  24. 24.
    Kani, J., Nishigaki, M.: Gamified CAPTCHA. In: Marinos, L., Askoxylakis, I. (eds.) Human Aspects of Information Security, Privacy, and Trust, HAS 2013. Lecture Notes in Computer Science, vol 8030, pp. 39–48. Springer, Berlin (2013)CrossRefGoogle Scholar
  25. 25.
    Karshmer, A.I., Myler, H.R., Davis, R.D.: The architecture of an inexpensive and portable talking-tactile terminal to aid the visually handicapped. Comput. Stand. Interfaces 6(2), 207–220 (1987)CrossRefGoogle Scholar
  26. 26.
    Kochanski, G., Lopresti, D.P., Shih, C.: A reverse turing test using speech. In: Proceedings of the Seventh International Conference on Spoken Language Processing (ICSLP2002 - INTERSPEECH 2002), Denver, Colorado, 16-20 Sept 2002, pp. 1357-1360. (2002). http://www.isca-speech.org/archive/icslp02
  27. 27.
    Kuber, R., Yu, W.: Feasibility study of tactile-based authentication. Int. J. Hum. Comput. Stud. 68(3), 158–181 (2010)CrossRefGoogle Scholar
  28. 28.
    Lazar, J., Feng, J., Brooks, T., Melamed, G., Wentz, B., Holman, J., Olalere, A., Ekedebe, N.: The soundsright captcha: an improved approach to audio human interaction proofs for blind users. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2267–2276. ACM (2012)Google Scholar
  29. 29.
    Lewthwaite, S.: Web accessibility standards and disability: developing critical perspectives on accessibility. Disabil. Rehabil. 36(16), 1375–1383 (2014)CrossRefGoogle Scholar
  30. 30.
    Lupkowski, P., Urbanski, M.: Semcaptchauser-friendly alternative for ocr-based captcha systems. In: International Multiconference on Computer Science and Information Technology. IMCSIT 2008, pp. 325–329. IEEE (2008)Google Scholar
  31. 31.
    Masek, W.J., Paterson, M.S.: A faster algorithm computing string edit distances. J. Comput. Syst. Sci. 20(1), 18–31 (1980)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Meutzner, H., Gupta, S., Kolossa, D.: Constructing secure audio captchas by exploiting differences between humans and machines. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, pp. 2335–2338. ACM, New York (2015). doi: 10.1145/2702123.2702127
  33. 33.
    Misra, D., Gaj, K.: Face recognition captchas. In: Null, p. 122. IEEE (2006)Google Scholar
  34. 34.
    Moreno, L., González, M., Martínez, P.: Captcha and accessibility-is this the best we can do? WEBIST 2, 115–122 (2014)Google Scholar
  35. 35.
    Olalere, A., Feng, J.H., Lazar, J., Brooks, T.: Investigating the effects of sound masking on the use of audio captchas. Behav. Inf. Technol. 33(9), 919–928 (2014)CrossRefGoogle Scholar
  36. 36.
    Pope, C., Kaur, K.: Is it human or computer? defending e-commerce with captchas. IT Prof. 7(2), 43–49 (2005)CrossRefGoogle Scholar
  37. 37.
    Rose, S., Engel, D., Cramer, N., Cowley, W.: Automatic keyword extraction from individual documents. In: Berry, M.W., Kogan, J., (eds.) Text mining: applications and theory, Wiley, Chichester (2010). doi: 10.1002/9780470689646.ch1 Google Scholar
  38. 38.
    Roshanbin, N., Miller, J.: A survey and analysis of current captcha approaches. J. Web Eng. 12(1–2), 1–40 (2013)Google Scholar
  39. 39.
    Roshanbin, N., Miller, J.: Adamas: interweaving unicode and color to enhance CAPTCHA security. Future Gener. Comput. Syst. 55, 289–310 (2016). doi: 10.1016/j.future.2014.11.004. http://www.sciencedirect.com/science/article/pii/S0167739X14002386
  40. 40.
    Ross, S.A., Halderman, J.A., Finkelstein, A.: Sketcha: a captcha based on line drawings of 3d models. In: Proceedings of the 19th International Conference on World Wide Web, pp. 821–830. ACM (2010)Google Scholar
  41. 41.
    Sachdeva, M., Kumar, K., Singh, G.: A comprehensive approach to discriminate ddos attacks from flash events. J. Inf. Secur. Appl. 26, 8–22 (2016)Google Scholar
  42. 42.
    Sauer, G., Holman, J., Lazar, J., Hochheiser, H., Feng, J.: Accessible privacy and security: a universally usable human-interaction proof tool. Univers. Access Inf. Soc. 9(3), 239–248 (2010)CrossRefGoogle Scholar
  43. 43.
    Sauer, G., Lazar, J., Hochheiser, H., Feng, J.: Towards a universally usable human interaction proof: evaluation of task completion strategies. ACM Trans. Access. Comput. (TACCESS) 2(4), 15 (2010)Google Scholar
  44. 44.
    Schryen, G., Wagner, G., Schlegel, A.: Development of two novel face-recognition captchas: a security and usability study. Comput. Secur. 60, 95–116 (2016)CrossRefGoogle Scholar
  45. 45.
    Shirali-Shahreza, M., Shirali-Shahreza, S.: Advanced collage captcha. In: Fifth International Conference on Information Technology: New Generations. ITNG 2008, pp. 1234–1235. IEEE (2008)Google Scholar
  46. 46.
    Shirali-Shahreza, M.H., Shirali-Shahreza, M.: Multilingual captcha. In: IEEE International Conference on Computational Cybernetics. ICCC 2007, pp. 135–139. IEEE (2007)Google Scholar
  47. 47.
    Shirali-Shahreza, S., Penn, G., Balakrishnan, R., Ganjali, Y.: Seesay and hearsay captcha for mobile interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2147–2156. ACM (2013)Google Scholar
  48. 48.
    Spitzer, M., Wildenhain, J., Rappsilber, J., Tyers, M.: Boxplotr: a web tool for generation of box plots. Nat. Methods 11(2), 121–122 (2014)CrossRefGoogle Scholar
  49. 49.
    Tam, J., Hyde, S., Simsa, J., Ahn, L.V.: Breaking audio CAPTCHAs. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Proceedings of the 21st International Conference on Neural Information Processing Systems (NIPS'08), pp. 1625–1632. Curran Associates Inc., USA (2008)Google Scholar
  50. 50.
    Von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: Recaptcha: human-based character recognition via web security measures. Science 321(5895), 1465–1468 (2008). http://www.sciencemag.org/content/321/5895/1465.short
  51. 51.
    Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R., Gouvea, E., Wolf, P., Woelfel, J.: Sphinx-4: A flexible open source framework for speech recognition. Technical Report. Sun Microsystems, Inc., Mountain View, USA (2004)Google Scholar
  52. 52.
    Wei, T.E., Jeng, A.B., Lee, H.M.: GeoCAPTCHAa novel personalized CAPTCHA using geographic concept to defend against 3 rd Party Human Attack. In: 2012 IEEE 31st International Performance Computing and Communications Conference (IPCCC), pp. 392–399. IEEE (2012)Google Scholar
  53. 53.
    Weston, J., Bordes, A., Chopra, S., Mikolov, T.: Towards ai-complete question answering: a set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698 (2015)
  54. 54.
    Winkler, W.E.: Overview of record linkage and current research directions. In: Bureau of the Census. Citeseer (2006). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.79.1519
  55. 55.
    Woolson, R.F.: Wilcoxon signed-rank test. In: Wiley Encyclopedia of Clinical Trials. Wiley (2007). http://onlinelibrary.wiley.com/doi/10.1002/9780471462422.eoct979/abstract
  56. 56.
    Yang, T.I., Koong, C.S., Tseng, C.C.: Game-based image semantic CAPTCHA on handset devices. In: Multimedia Tools and Applications, pp. 1–16 (2013). http://link.springer.com/article/10.1007/s11042-013-1666-7
  57. 57.
    Zhou, J., Chin, W.Y., Roman, R., Lopez, J.: An effective multi-layered defense framework against spam. Inf. Secur. Tech. Rep. 12(3), 179–185 (2007)CrossRefGoogle Scholar
  58. 58.
    Zhu, B.B., Yan, J., Li, Q., Yang, C., Liu, J., Xu, N., Yi, M., Cai, K.: Attacks and design of image recognition captchas. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS ’10, pp. 187–200. ACM, New York (2010). doi: 10.1145/1866307.1866329

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Computer SciencePondicherry UniversityPondicherryIndia
  2. 2.Department of Computer Science and EngineeringNational Institute of Technology PuducherryKaraikalIndia

Personalised recommendations