Towards standardisation of user models for simulation and adaptation purposes

  • N. Kaklanis
  • P. Biswas
  • Y. Mohamad
  • M. F. Gonzalez
  • M. Peissner
  • P. Langdon
  • D. Tzovaras
  • C. Jung
Long paper


The use of user models can be very valuable when trying to develop accessible and ergonomic products and services taking into account users’ specific needs and preferences. Simulation of user–product interaction using user models may reveal accessibility issues at the early stages of design and development, and this results to a significant reduction in costs and development time. Moreover, user models can be used in adaptive interfaces enabling the personalised customisation of user interfaces that enhances the accessibility and usability of products and services. This paper presents the efforts of the Virtual User Modelling and Simulation Standardisation ‘VUMS’ cluster of projects towards the development of an interoperable user model, able to describe both able-bodied and people with various kinds of disabilities. The VUMS cluster is consisted by the VERITAS, MyUI, GUIDE, and VICON FP7 European projects, all involved in user modelling from different perspectives. The main goal of the VUMS cluster was the development of a unified user model that could be used by all the participant projects and that could be the basis of a new user model standard. Currently, within the VUMS cluster, a common user model has been defined and converters that enable the transformation from each project’s specific user model to the VUMS user model and vice versa have been developed enabling, thus, the exchange of user models between the projects.


User modelling Virtual user model Simulation Adaptation Accessibility Usability 


  1. 1.
    Anderson, J.R., Lebiere, C.: The Atomic Components Of Thought. Lawrence Erlbaum Associates, Hillsdale, NJ (1998)Google Scholar
  2. 2.
    Anthropos ErgoMAX: Accessed Jan (2004)
  3. 3.
    Apkarian, J., Naumann, S., Cairns, B.: A three-dimensional kinematic and dynamic model of the lower limb. J. Biomech. 22, 143–155 (1989)CrossRefGoogle Scholar
  4. 4.
    Balme, L., Demeure, A., Barralon, N., Coutaz, J., Calvary, G.: CAMELEON-RT: a software architecture reference model for distributed, migratable, and plastic user interfaces. Proc SOC EUSAI 2004, 291–302 (2004)Google Scholar
  5. 5.
    Barnard, P.: The emotion research group website, MRC cognition and brain sciences unit. Accessed 1 Jul (2007)
  6. 6.
    Biswas, P., Langdon, P.: Developing multimodal adaptation algorithm for mobility impaired users by evaluating their hand strength. Int. J. Human-Comput. Inter. 28(9), Taylor & Francis (2012)Google Scholar
  7. 7.
    Biswas, P., Langdon, P., & Robinson, P.: Designing inclusive interfaces through user modelling and simulation. Int. J. Hum. Comput. Inter., Taylor & Francis, vol. 28 Issue 1 (2012)Google Scholar
  8. 8.
    Boden, M.A.: Computer Models of Mind: Computational Approaches in Theoretical Psychology, Cambridge University Press, Cambridge (1985)Google Scholar
  9. 9.
    Byrne, M.D.: ACT-R/PM and menu selection: applying a cognitive architecture to HCI. Int. J. Hum. Comput. Stud. 55, 41–84 (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A unifying reference framework for multi-target user interfaces. Interact. Comput. 15(3), 289–308 (2003)CrossRefGoogle Scholar
  11. 11.
    Card, S., Moran, T., Newell, A.: The Psychology of Human-Computer Interaction. Lawrence Erlbaum Associates, Hillsdale, NJ (1983)Google Scholar
  12. 12.
    Carmagnola, F., Cena, F., Gena, C.: User model interoperability: a survey. User Model. User-Adap. Inter. 21(3), 285–331 (2011)CrossRefGoogle Scholar
  13. 13.
    Cappelli, T.M., Duffy, V.G.: Motion capture for job risk classifications incorporating dynamic aspects of work. Digital human modeling for design and engineering conference, Lyon. SAE International, Warrendale, July 4–6 (2006)Google Scholar
  14. 14.
    Choi, J.: Developing a 3-dimensional Kinematic Model of the Hand for Ergonomic Analyses of Hand Posture, Hand Space Envelope, and Tendon Excursion. PhD thesis, The University of Michigan (2008)Google Scholar
  15. 15.
    Cognitive Architectures. Cognitive_architecture. Accessed 1st July 2007
  16. 16.
    Coluccini, M., Maini, E.S., Martelloni, C., Sgandurra, G., Cioni, G.: Kinematic characterization of functional reach to grasp in normal and in motor disabled children. Gait Posture 25(4), 493–501, ISSN 0966-6362, doi: 10.1016/j.gaitpost.2006.12.015. (
  17. 17.
    Coutaz, J.: User interface plasticity: model driven engineering to the limit!. In Proceedings of the 2nd ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS ‘10). New York: ACM. pp. 1–8 (2010)Google Scholar
  18. 18.
    DeCarlo, D., Metaxas, D., Stone, M.: An anthropometric face model using variational techniques. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH ‘98. ACM, New York, pp. 67–74 (1998)Google Scholar
  19. 19.
    DiLorenzo, P.C., Zordan, V.B., Sanders, B.L.: Laughing out loud: control for modeling anatomically inspired laughter using audio. ACM Trans. Graph. 27(125), 1–8 (2008)CrossRefGoogle Scholar
  20. 20.
    Duffy, V.G.: Handbook of Digital Human Modeling: Research for Applied Ergonomics and Human Factors Engineering. CRC Press, Florida (2008)CrossRefGoogle Scholar
  21. 21.
    Eng, J.J., Winter D.A.: Kinetic analysis of the lower limbs during walking: what information can be gained from a three-dimensional model? J. Biomech. 28(6), 753–758 (1995)CrossRefGoogle Scholar
  22. 22.
    Eng, K., Lewis, R.L., Tollinger, I., Chu, A., Howes, A., Vera A.: “Generating Automated Predictions of Behavior Strategically Adapted to Specific Performance Objectives.” ACM/SIGCHI Conference on Human Factors in Computing Systems. pp. 621–630 (2006)Google Scholar
  23. 23.
    Feyen, R., Liu, Y., Chaffin, D., Jemmerson, G., Joseph, B.: Computer-aided ergonomics: a case study of incorporating ergonomics analyses into workplace design. Appl. Ergon. 2000(31), 291–300 (2000)CrossRefGoogle Scholar
  24. 24.
    Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47, 381–391 (1954)CrossRefGoogle Scholar
  25. 25.
    Fortin, C., Gilbert, R., Beuter, A., Laurent, F., Schiettekatte, J., Carrier, R., Dechamplain, B.: SAFEWORK: a microcomputer-aided workstation design and analysis. New advances and future developments. In: Karkowski, W., Genaidy, A.M., Asfour, S.S. (eds.) Computer-Aided Ergonomics, pp. 157–180. Taylor and Francis, London (1990)Google Scholar
  26. 26.
    Gajos K. Z., Wobbrock J. O. and Weld D. S.: Automatically generating user interfaces adapted to users’ motor and vision capabilities. In: ACM Symposium on User Interface Software and Technology, pp. 231–240 (2007)Google Scholar
  27. 27.
    Gajos, K.Z., Weld, D.S., Wobbrock, J.O.: Automatically generating personalized user interfaces with Supple. Artif. Intell. 174(12–13), 910–950 (2010)CrossRefGoogle Scholar
  28. 28.
    Garner, B.A., Pandy, M.G.: Estimation of Musculotendon Properties in the Human Upper Limb. Ann. Biomed. Eng. 31, 207–220 (2003)CrossRefGoogle Scholar
  29. 29.
    Hampson, P.J., Moris, P.E.: Understanding Cognition. Blackwell Publishers Ltd., Oxford (1996)Google Scholar
  30. 30.
    Hick, W.E.: On the rate of gain of information. J. Exp. Psychol. 4, 11–26 (1952)CrossRefGoogle Scholar
  31. 31.
    Hingtgen, B.A., McGuire, J.R., Wang, M., Harris, G.F. Design and validation of an upper extremity kinematic model for application in stroke rehabilitation, Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE, vol. 2, pp. 1682–1685, 17–21 (2003)Google Scholar
  32. 32.
    Holzbaur, K.R.S., Murray, W.M., Delp, S.L.: A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann. Biomed. Eng. 33, 829–840 (2005)CrossRefGoogle Scholar
  33. 33.
    Hornof, A.J., Kieras D.E.: Cognitive Modeling Reveals Menu Search Is Both Random And Systematic. ACM/SIGCHI Conference on Human Factors in Computing Systems. pp 107–114 (1997)Google Scholar
  34. 34.
    Howes, A., Vera, A., Lewis, R.L., Mccurdy, M.: Cognitive Constraint Modeling: A Formal Approach To Reasoning About Behavior. Annual meeting of the Cognitive Science Society Lawrence Erlbaum Associates (2004)Google Scholar
  35. 35.
    ISO/TC 159 Ergonomics: ISO 9241-171:2008 Ergonomics of human-system interaction—Part 171: Guidance on software accessibility (2008)Google Scholar
  36. 36.
    Jameson, A.: Systems that Adapt to their Users: An Integrative Perspective. Saarland University, Saarbrücken (2001)Google Scholar
  37. 37.
    John, B.E., Kieras, D.: The GOMS family of user interface analysis techniques: comparison and contrast. ACM Trans. Comput. Hum. Interact. 3, 320–351 (1996)CrossRefGoogle Scholar
  38. 38.
    Johnson-Laird, P.A.: The Computer and The Mind. Harvard University Press, Cambridge, MA (1988)Google Scholar
  39. 39.
    Kähler, K., Haber, J., Yamauchi, H., Seidel, H.P. (2002). Head shop: Generating animated head models with anatomical structure. In ACM SIGGRAPH/EG Symposium on Computer Animation, 55–64Google Scholar
  40. 40.
    Kane, S.K., Wobbrock, J.O. & Smith, I.E.: Getting off the treadmill: evaluating walking user interfaces for mobile devices in public spaces. In Proceedings of the 10th International Conference on Human Computer Interaction with Mobile Devices and Services (MobileHCI ‘08). New York: ACM. pp. 109–118 (2008)Google Scholar
  41. 41.
    Keates, S., Clarkson, J., Robinson, P.: Investigating The Applicability of User Models For Motion Impaired Users. ACM/SIGACCESS Conference on Computers and Accessibility, pp. 129–136 (2000)Google Scholar
  42. 42.
    Kieras, D., Meyer, D.E.: An overview of the EPIC architecture for cognition and performance with application to human-computer interaction. Hum. Comput. Interact. 12, 391–438 (1990)CrossRefGoogle Scholar
  43. 43.
    Kirisci, P.T., Klein, P., Modzelewski, M., Lawo, M., Mohamad, Y., Fiddian, T., Bowden, C., Fennell, A., Connor, J.O.: Supporting inclusive design of user interfaces with a virtual user model. HCI 6: 69–78. The four-volume set LNCS 6765–6768 (2011)Google Scholar
  44. 44.
    Komura, T., Shinagawa, Y., Kunii, T.L.: Creating and retargeting motion by the musculoskeletal human body model. Vis. Comput. 16(5), 254–270 (2000)CrossRefGoogle Scholar
  45. 45.
    Koo, T.k., Mak, A.F.: Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow. J. Electromyogr. Kinesiol. 15(1), 12–26 (2005). doi: 10.1016/j.jelekin.2004.06.007. (
  46. 46.
    Koo, T.K., Mak, A.F., Hung, L.K.: In vivo determination of subject-specific musculotendon parameters: applications to the prime elbow flexors in normal and hemiparetic subjects. Clin. Biomech. 17(5), 390–399 (2002). doi: 10.1016/S0268-0033(02)00031-1. (
  47. 47.
    Laitila, L.: Datormanikinprogram om verktyg vid arbetsplatsutformning—En kritisk studie av programanvändning. Thesis. Luleå Technical University, Luleå (2005)Google Scholar
  48. 48.
    Lallement, Y., Alexandre, F.: Cognitive Aspects of Neurosymbolic Integration. Connectionist-Symbolic Integration Ed. Sun R. and Alexandre F.London, UK: Lawrence Erlbaum Associates (1997)Google Scholar
  49. 49.
    Lamkull, D., Hanson, L., Ortengren, R.: A comparative study of digital human modelling simulation results and their outcomes in reality: a case study within manual assembly of automobiles. Int. J. Ind. Ergon. 39, 428–441 (2009)CrossRefGoogle Scholar
  50. 50.
    Lee, S.H., Terzopoulos, D.: Heads up! Biomechanical modeling and neuromuscular control of the neck. ACM Trans. Graph. 253, 1188–1198. Proc. ACM SIGGRAPH 06 (2006)Google Scholar
  51. 51.
    Lind, S., Krassi, B., Johansson, B., Viitaniemi, J., Heilala, J., Stahre, J., Vatanen, S., Fasth, Å., Berlin., C.: SIMTER: A Production Simulation Tool for Joint Assessment of Ergonomics, Level of Automation and Environmental Impacts. The 18th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM 2008), June 30–July 2, (2008)Google Scholar
  52. 52.
    Mankoff, J., Fait, H., Juang, R.: Evaluating accessibility through simulating the experiences of users with vision or motor impairments. IBM Syts. J. 44(3), 505–518 (2005)CrossRefGoogle Scholar
  53. 53.
    Marshall, R., Case, K., Porter, J.M., Sims, R.E., Gyi, D.E.: Using HADRIAN for eliciting virtual user feedback in ‘Design for All’. Proc. Inst. Mech. Eng. B: J. Eng. Manuf. 218(9), 1203–1210 (2004)Google Scholar
  54. 54.
    Mcmillan, W.W.: Computing for users with special needs and models of omputer-human interaction. ACM/SIGCHI Conference on Human Factors in Computing Systems. pp. 143–148 (1992)Google Scholar
  55. 55.
    Moran, T.P.: Command language grammar: a representation for the user interface of interactive computer systems. Int. J. Man Mach. Stud. 15(1), 3–50 (1981)CrossRefGoogle Scholar
  56. 56.
    Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge, MA (1990)Google Scholar
  57. 57.
    Nichols, J., Myers, B.A.: Creating a lightweight user interface description language: An overview and analysis of the personal universal controller project. ACM Trans. Comput.-Hum. Interact. 16(4), Article 17, 37 pp (2009)Google Scholar
  58. 58.
    Nichols, J., Myers, B.A., Rothrock, B.: UNIFORM: automatically generating consistent remote control user interfaces. In Proceedings CHI ‘06. ACM, New York. pp. 611–620 (2006)Google Scholar
  59. 59.
    Nichols, J., Rothrock, B., Chau, D.H., Myers, B.A.: Huddle: automatically generating interfaces for systems of multiple connected appliances. In Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology (UIST ‘06). ACM, New York, pp. 279–288 (2006)Google Scholar
  60. 60.
    Oka, N.: Hybrid cognitive model of conscious level processing and unconscious level processing. IEEE International Joint Conference on Neural Networks, pp. 485–490 (1991)Google Scholar
  61. 61.
    Oppermann, R.: Adaptively supported adaptability. Int. J. Hum. Comput. Stud. 40(3), 455–472 (1994)CrossRefGoogle Scholar
  62. 62.
    Ouerfelli, M., Kumar, V., Harwin, W.S.: Kinematic modeling of head-neck movements, Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, vol. 29, no.6, pp. 604–615 (1999). doi: 10.1109/3468.798064, URL:
  63. 63.
    Pai, Y.C., Patton, J.L.: Center of mass velocity-position predictions for balance control. J. Biomech. 11, 341–349 (1997)Google Scholar
  64. 64.
    Pai, Y.C., Patton, J.L.: Erratum: center of mass velocity-position predictions for balance control. J. Biomech. 31, 199 (1998)Google Scholar
  65. 65.
    Pai, Y.C., Rogers, M.W., Patton, J.L., Cain, T.D., Hanke, T.: Static versus dynamic predictions of protective stepping following waist-pull perturbations in young and older adults. J. Biomech. 31, 1111–1118 (1998)CrossRefGoogle Scholar
  66. 66.
    Paterno, F., Santoro, C., Mäntyjärvi, J., Mori, G., Sansone, S.: Authoring pervasive multimodal user interfaces. Int. J. Web Eng. Technol. 4(2), 235–261 (2008)Google Scholar
  67. 67.
    Paterno, F., Santoro, C. & Spano, L. D.: MARIA: a universal, declarative, multiple abstraction-level language for service-oriented applications in ubiquitous environments. ACM Trans. Comput.-Hum. Interact. 16(4), Article 19 (2009)Google Scholar
  68. 68.
    Patton, J.L., Pai, Y.C., and Lee, W.A.: A Simple Model of the Feasible Limits to Postural Stability, presented at IEEE/Engineering in Medicine an Biology Society Meeting, Chicago (1997)Google Scholar
  69. 69.
    Patton, J.L., Lee, W.A., Pai, Y.C.: Relative stability improves with experience in a dynamic standing task. Exp. Brain Res. 135, 117–126 (2000)CrossRefGoogle Scholar
  70. 70.
    Peissner, M., Häbe, D., Janssen, D. & Sellner, T. (2012). MyUI: generating accessible user interfaces from multimodal design patterns. In Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS ‘12). ACM, New York pp. 81–90Google Scholar
  71. 71.
    Pennestrì, E., Stefanelli, R., Valentini, P.P., Vita, L.: Virtual musculo-skeletal model for the biomechanical analysis of the upper limb. J. Biomech. 40(6), 1350–1361 (2007). doi: 10.1016/j.jbiomech.2006.05.013. (
  72. 72.
    Phillips, C.B., Badler, N.I.: Jack: a toolkit for manipulating articulated figures. In: Proceedings of the 1st Annual ACM SIGGRAPH Symposium on User Interface Software, pp. 221–229. ACM, New York (1988)Google Scholar
  73. 73.
    Porter, J., Case, K., Freer, M.T., Bonney, M.C.: Automotive Ergonomics, Chapter Computer-aided ergonomics design of automobiles. Taylor and Francis, London (1993)Google Scholar
  74. 74.
    Porter, J.M., Marshall, R., Freer, M., Case, K.: SAMMIE: a computer aided ergonomics design tool. In: Delleman, N.J., Haslegrave, C.M., Chaffin, D.B. (eds.) Working Postures and Movements: Tools for Evaluation and Engineering, pp. 454–462. CRC Press LLC, Boca Raton (2004)Google Scholar
  75. 75.
    Prince, F., Corriveau, H., Hebert, R., Winter, D.A.: Gait in the elderly. Gait Posture 5(2): 128–135 (1997)Google Scholar
  76. 76.
    Rao, S.S., Bontrager, E.L., Gronley, J.K., Newsam, C.J., Perry, J.: Threedimensional kinematics of wheelchair propulsion. IEEE Trans. Rehabil. Eng. 4, 152–160 (1996)CrossRefGoogle Scholar
  77. 77.
    Ringbauer, B., Peissner, M., Gemou, M.: From “design for all” towards “design for one”: a modular user interface approach. In: Stephanidis, C. (ed.) Universal Access in HCI, Part I, HCII 2007, LNCS 4554, pp. 517–526. Springer, Berlin (2007)Google Scholar
  78. 78.
    Sapin, E., Goujon, H., de Almeida, F., Fodé, P., Lavaste, F.: Functional gait analysis of trans-femoral amputees using two different single-axis prosthetic knees with hydraulic swing-phase control: kinematic and kinetic comparison of two prosthetic knees. Prosthet. Orthot. Int. 32(2), 201–218 (2008)CrossRefGoogle Scholar
  79. 79.
    Savidis, A., Stephanidis, C.: Unified user interface design: designing universally accessible interactions. Interact. Comput. 16(2), 243–270 (2004)CrossRefGoogle Scholar
  80. 80.
    Serna, A., Pigot, H., Rialle, V.: Modeling the progression of Alzheimer’s disease for cognitive assistance in smart homes. User Model. User-Adap. Inter. 17, 415–438 (2007)CrossRefGoogle Scholar
  81. 81.
    Shapiro, A., Faloutsos, P., Ng-Thow-Hing, V.: Dynamic animation and control environment. In Proceedings of Graphics Interface 2005, pp. 61–70 (2005)Google Scholar
  82. 82.
    SimTk. OpenSim (2008),
  83. 83.
    Sottet, J-.S., Ganneau, V., Calvary, G., Coutaz, J., Demeure, A., Favre, J.-M., Demumieux, R.: Model-driven adaptation for plastic user interfaces. In: Baranauskas, C., Palanque, P., Abascal, J., Junqueira Barbosa, S. (eds.). Proceedings of the 11th IFIP TC 13 International Conference on Human-Computer Interaction (INTERACT’07), pp. 397–410. Springer, Berlin (2007)Google Scholar
  84. 84.
    Stephanidis, C., Constantinou, P.: Designing human computer interfaces for quadriplegic people. ACM Trans. Comput. Hum. Interact. 10(2), 87–118 (2003)CrossRefGoogle Scholar
  85. 85.
    Stephanidis, C., Paramythis, A., Sfyrakis, M., Stergiou, A., Maou, N., Leventis, A., Paparoulis, G., Karagiannidis, C.: Adaptable and adaptive user interfaces for disabled users in the AVANTI project. Intelligence in services and networks, LNCS-1430, pp. 153–166, Springer (1998)Google Scholar
  86. 86.
    Tollinger, I., Lewis, R. L., McCurdy, M., Tollinger, P., Vera, A., Howes, A., Pelton, L.: Supporting efficient development of cognitive models at multiple skill levels: exploring recent advances in constraint-based modeling. ACM/SIGCHI conference on human factors in computing systems, pp. 411–420 (2005)Google Scholar
  87. 87.
    van der Meulen, P., Seidl, A.: RAMSIS- the leading cad tool for ergonomic analysis of vehicles, digital human modeling, HCII 2007. LNCS 4561, 1008–1017 (2007)Google Scholar
  88. 88.
    Van Nierop, O.A., Van der Helm, A., Overbeeke, K.J., Djajadiningrat, T.J.: A natural human hand model. Vis. Comput. 24(1), 31–44 (2008)CrossRefGoogle Scholar
  89. 89.
    VSR Research Group: Technical report for project virtual soldier research. Tech. rep., Center for computer-aided design, The University of IOWA (2004)Google Scholar
  90. 90.
    Weibelzahl, S.: Evaluation of adaptive systems. Dissertation. Trier: University of Trier (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • N. Kaklanis
    • 1
  • P. Biswas
    • 2
  • Y. Mohamad
    • 3
  • M. F. Gonzalez
    • 4
  • M. Peissner
    • 5
  • P. Langdon
    • 2
  • D. Tzovaras
    • 1
  • C. Jung
    • 6
  1. 1.Information Technologies InstituteCentre for Research and Technology HellasThessalonikiGreece
  2. 2.Department of EngineeringThe University of CambridgeCambridgeUK
  3. 3.Fraunhofer FITAugustinGermany
  4. 4.INGEMADonostiaSpain
  5. 5.Fraunhofer IAOStuttgartGerman
  6. 6.Fraunhofer IGDDarmstadtGermany

Personalised recommendations