Advertisement

Universal Access in the Information Society

, Volume 14, Issue 2, pp 215–229 | Cite as

Quantitative support for UX methods identification: how can multiple criteria decision making help?

  • Paulo Melo
  • Luísa Jorge
Long paper

Abstract

This paper presents views on how quantitative multiple criteria decision-making (MCDM) approaches may be applied to certain aspects of user experience design and evaluation (D&E) methods identification, emphasizing its strengths and weaknesses for this task. Often D&E methods need to be applied in contexts different of those they had been applied before and as such must be transferred to those new contexts. This work presents a model for the quantitative method matching step of the transfer process, describes how different MCDM methods can be applied to this task, and discusses the results of an experience that tried to apply a couple of MCDM procedures to method selection.

Keywords

Multi-criteria matching MCDM matching Usability evaluation methods identification PROMETHEE SMAA-2 

Notes

Acknowledgements

This work has been partially supported by the Portuguese Foundation for Science and Technology under project grant[s] PEst-OE/ EEI/UI308/2014.

References

  1. 1.
    Amir, A., Chencinski, E., Iliopoulos, C., Kopelowitz, T., Zhang, H.: Property matching and weighted matching. Theo. Comp. Sci. 395(2–3), 298–310 (2008). doi: 10.1016/j.tcs.2008.01.006 Google Scholar
  2. 2.
    Belton, V., Pictet, J.: A framework for group decision using a MCDA model: sharing, aggregating or comparing individual information? J. Decis. Syst. 6, 283–303 (1997)CrossRefGoogle Scholar
  3. 3.
    Brans, J.P., Vincke, P., Mareschal, B.: How to select and how to rank projects: the promethee method. Eur. J. Oper. Res. 24(2), 228–238 (1986). doi: 10.1016/0377-2217(86)90044-5. http://linkinghub.elsevier.com/retrieve/pii/0377221786900445
  4. 4.
    Card, S., Moran, T.P., Newell, A.O.: The Psychology of Human Computer Interaction. Lawrence Erlbaum Associates, London (1986)Google Scholar
  5. 5.
    Edwards, W.: How to use multiattribute utility measurement for social decisionmaking. IEEE Trans. Syst. Man Cybern. 7(5), 326–340 (1977)CrossRefGoogle Scholar
  6. 6.
    Ehrgott, M., Gandibleux, X., (eds.): Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. Kluwer Academic Publishers, Boston (2002)Google Scholar
  7. 7.
    Ferre Grau, X., Bevan, N.: Usability planner: a tool to support the process of selecting usability methods. In Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) 13th IFIP TCI3 International Conference on Human–Computer Interaction–Interact 2011, pp. 652–655. Springer, Lisbon (2011). doi: 10.1007/978-3-642-23768-3_105
  8. 8.
    Figueira, J.R., Mousseau, V., Roy, B.: Electre methods. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 133–162. Springer, New York (2005)CrossRefGoogle Scholar
  9. 9.
    Ghomari, L., Ghomari, A.R.: A comparative study: syntactic versus semantic matching systems. In: IEEE International Conference on Complex, Intelligent and Software Intensive Systems (2009). doi: 10.1109/CISIS.2009.75. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5066864
  10. 10.
    Kujala, S., Roto, V., Väänänen-Vainio-Mattila, K., Sinnelä, A.: Identifying hedonic factors in long-term user experience. In Proceedings of the 2011 Conference on Designing Pleasurable Products and Interfaces–DPPI’11, 1. ACM Press, New York (2011). doi: 10.1145/2347504.2347523. http://dl.acm.org/citation.cfm?doid=2347504.2347523
  11. 11.
    Lahdelma, R., Salminen, P.: SMAA-2: stochastic multicriteria acceptability analysis for group decision making. Oper. Res. 49(3), 444–454 (2001). doi: 10.1287/opre.49.3.444.11220. http://or.journal.informs.org/content/49/3/444
  12. 12.
    Law, C.M., Yi, J.S., Choi,Y.S., Jacko, J.A.: A systematic examination of universal design resources: part 1, Heuristic Evaluation. Univers Access Inf. Soc. 7(1–2), 31–54 (2007). doi: 10.1007/s10209-007-0100-1. http://www.springerlink.com/index/10.1007/s10209-007-0100-1
  13. 13.
    Law, E.L.-C., Springett, M., Winckler, M.: Maturation of Usability Evaluation Methods: Retrospect and Prospect Final Reports of MAUSE. IRIT Press, Toulouse (2009)Google Scholar
  14. 14.
    Mareschal, B., De Smet, Y.: Visual PROMETHEE: developments of the PROMETHEE & GAIA multicriteria decision aid methods. In: 2009 IEEE International Conference on Industrial Engineering and Engineering Management, pp. 1646–1649 (2009). doi: 10.1109/IEEM.2009.5373124. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5373124
  15. 15.
    Medaglia, A.L., Fang, S.C.: A genetic-based framework for solving (multi-criteria) weighted matching problems. Eur. J. Oper. Res. 149(1), 77–101 (2003). doi: 10.1016/S0377-2217(02)00484-8. http://www.sciencedirect.com/science/article/pii/S0377221702004848
  16. 16.
    Miettinen, K., Makela, M.: On scalarizing functions in multiobjective optimization. OR Spectrum 24(2), 193–213 (2002).doi: 10.1007/s00291-001-0092-9. http://www.springerlink.com/Index/10.1007/s00291-001-0092-9 Google Scholar
  17. 17.
    Nielsen, J.: Usability inspection methods. In: Conference Companion on Human Factors in Computing Systems–CHI’94, pp. 413–414. ACM Press, New York (1994). doi: 10.1145/259963.260531. http://portal.acm.org/citation.cfm?doid=259963.260531
  18. 18.
    Nielsen, J., Molich, R.: Heuristic evaluation of user interfaces. In: Proceedings of the SIGCHI conference on human factors in computing systems empowering people–CHI’90, pp. 249–256. ACM Press, New York (1990). doi: 10.1145/97243.97281. http://portal.acm.org/citation.cfm?doid=97243.97281
  19. 19.
    Nielsen, J., Sano, D.: SunWeb: user interface design for sun microsystem’s internal web. Comput. Netw. ISDN Syst. 28(1–2), 179–188 (1995). doi: 10.1016/0169-7552(95)00109-7. http://linkinghub.elsevier.com/retrieve/pii/0169755295001097
  20. 20.
    Norman, G.: Likert scales, levels of measurement and the ‘laws’ of statistics. Adv. Health Sci. Educ. Theory Pract. 15(5), 625–32 (2010). doi: 10.1007/s10459-010-9222-y. http://www.ncbi.nlm.nih.gov/pubmed/20146096
  21. 21.
    Silva, C.F., Cunha, P.R., Ghodous, P., Melo, P.: The semantic side of service-oriented architectures. In: Mentzas, G., Friesen, A (eds.) Semantic enterprise application Integration for business processes service oriented frameworks, pp. 90–104. IGI Global. (2010). doi: 10.4018/978-1-60566-804-8.ch005. http://www.igi-global.com/bookstore/chapter.aspx?TitleId=37934
  22. 22.
    Siskos, Y., Grigoroudis, E., Matsatsinis, N.: UTA Methods. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 297–344. Springer, New York (2005)Google Scholar
  23. 23.
    Stroulia, E., Wang, Y.: Structural and semantic matching for assessing web-service similarity. Int. J. Cooperat. Inform. Syst. 14(4), 407–437 (2005). doi: 10.1142/S0218843005001213. http://www.worldscinet.com/ijcis/14/1404/S0218843005001213.html
  24. 24.
    Wixon, D., Holtzblatr, K., Knox, S.: Contextual design: an emergent view of system design. In: Carrasco. J., Whiteside. J., Seattle W.A. (eds.) Proceedings of the ACM CHI 90 Human Factors in Computing Systems Conference (1990)Google Scholar
  25. 25.
    Woolrych, A., Hornbæk, K., Frøkjær, E., Cockton, G.; Ingredients and meals rather than recipes: a proposal for research that does not treat usability evaluation methods as indivisible wholes. Int. J. Human Comput. Interact. 27(10), 940–970 (2011). doi: 10.1080/10447318.2011.555314. http://www.tandfonline.com/doi/abs/10.1080/10447318.2011.555314
  26. 26.
    Yarbus, A.L.: Eye Movements and Vision. Plenum Press, New York (1967)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Faculty of EconomicsUniversity of CoimbraCoimbraPortugal
  2. 2.INESC CoimbraCoimbraPortugal
  3. 3.Polytechnic Institute of BragançaBragançaPortugal

Personalised recommendations