Universal Access in the Information Society

, Volume 13, Issue 3, pp 329–337 | Cite as

Understanding continuance usage intention of mobile internet sites

  • Tao ZhouEmail author
Long paper


Due to the high acquisition costs and low switching costs, retaining users and facilitating their continuance usage are crucial for mobile service providers. Integrating both perspectives of perceived utility and flow experience, this research identifies the factors affecting continuance usage intention of mobile internet sites. Data were collected through a survey, and data analysis was then conducted with structural equation modeling. The results indicated that system quality and information quality affect perceived usefulness, satisfaction and flow. And these three factors determine continuance usage intention. Among them, flow has the largest effect on continuance usage intention. The results imply that service providers need to improve users’ experience in order to facilitate their continuance usage of mobile internet sites.


Continuance usage Mobile internet sites Perceived usefulness Flow 



This work was partially supported by grants from the National Natural Science Foundation of China (71371004, 71001030), and a grant from the Research Center of Information Technology & Economic and Social Development in Zhejiang Province.


  1. 1.
    Anderson, J.C., Gerbing, D.W.: Structural equation modeling in practice: a review and recommended two-step approach. Psychol. Bull. 103(3), 411–423 (1988)CrossRefGoogle Scholar
  2. 2.
    Animesh, A., Pinsonneault, A., Yang, S.B., Oh, W.: An odyssey into virtual worlds: exploring the impacts of technological and spatial environments on intention to purchase virtual products. MIS Q 35(3), 789–810 (2011)Google Scholar
  3. 3.
    Beaudry, A., Pinsonneault, A.: The other side of acceptance: studying the direct and indirect effects of emotions on information technology use. MIS Q 34(4), 689–710 (2010)Google Scholar
  4. 4.
    Bhattacherjee, A.: Understanding information systems continuance: an expectation-confirmation model. MIS Q 25(3), 351–370 (2001)CrossRefGoogle Scholar
  5. 5.
    Chatterjee, S., Chakraborty, S., Sarker, S., Sarker, S., Lau, F.Y.: Examining the success factors for mobile work in healthcare: a deductive study. Decis. Support Syst. 46(3), 620–633 (2009)CrossRefGoogle Scholar
  6. 6.
    Chung, N., Kwon, S.J.: Effect of trust level on mobile banking satisfaction: a multi-group analysis of information system success instruments. Behav. Inf. Technol 28(6), 549–562 (2009)CrossRefGoogle Scholar
  7. 7.
    CNNIC, 30th Statistical Survey Report on the Internet Development in China. China Internet Network Information Center (2012)Google Scholar
  8. 8.
    CNNIC, China Mobile Browser User Behavior Report. China Internet Network Information Center (2012)Google Scholar
  9. 9.
    Csikszentmihalyi, M., Csikszentmihalyi, I.S.: Optimal experience: psychological studies of flow in consciousness. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar
  10. 10.
    Davis, F.D.: Perceived usefulness, Perceived ease of use, and user acceptance of information technology. MIS Q 13(3), 319–340 (1989)CrossRefGoogle Scholar
  11. 11.
    Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: Extrinsic and intrinsic motivation to use computers in the workplace. J. App. Soc. Psychol 22(14), 1111–1132 (1992)CrossRefGoogle Scholar
  12. 12.
    DeLone, W.H., McLean, E.R.: Measuring e-Commerce success: applying the DeLone and McLean information systems success model. Int. J. Electron. Commer 9(1), 31–47 (2004)Google Scholar
  13. 13.
    Deng, L., Turner, D.E., Gehling, R., Prince, B.: User experience, satisfaction, and continual usage intention of IT. Eur. J. Inf. Syst 19(1), 60–75 (2010)CrossRefGoogle Scholar
  14. 14.
    Gefen, D., Straub, D.W., Boudreau, M.C.: Structural equation modeling and regression: guidelines for research practice. Commun. Assoc. Inf. Syst 4(7), 1–70 (2000)Google Scholar
  15. 15.
    Goel, L., Johnson, N.A., Junglas, I., Ives, B.: From space to place: predicting users’ intentions to return to virtual worlds. MIS Q 35(3), 749–771 (2011)Google Scholar
  16. 16.
    Goodhue, D.L., Thompson, R.L.: Task-technology fit and individual performance. MIS Q 19(2), 213–236 (1995)CrossRefGoogle Scholar
  17. 17.
    Guo, Y.M., Poole, M.S.: Antecedents of flow in online shopping: a test of alternative models. Inf. Syst. J 19(4), 369–390 (2009)CrossRefGoogle Scholar
  18. 18.
    Ha, I., Yoon, Y., Choi, M.: Determinants of adoption of mobile games under mobile broadband wireless access environment. Inf. Manag 44(3), 276–286 (2007)CrossRefGoogle Scholar
  19. 19.
    Hausman, A.V., Siekpe, J.S.: The effect of web interface features on consumer online purchase intentions. J. Bus. Res. 62(1), 5–13 (2009)CrossRefGoogle Scholar
  20. 20.
    Ho, L.-A., Kuo, T.-H.: How can one amplify the effect of e-learning? An examination of high-tech employees’ computer attitude and flow experience. Comput. Human Behav 26(1), 23–31 (2010)CrossRefGoogle Scholar
  21. 21.
    Hoffman, D.L., Novak, T.P.: Marketing in hypermedia computer-mediated environments: conceptual foundations. J. Mark 60(3), 50–68 (1996)CrossRefGoogle Scholar
  22. 22.
    Hsu, C.-L., Lu, H.-P., Hsu, H-.H.: Adoption of the mobile Internet: an empirical study of multimedia message service (MMS). Omega 35(6), 715–726 (2007)CrossRefGoogle Scholar
  23. 23.
    Jung, Y., Perez-Mira, B., Wiley-Patton, S.: Consumer adoption of mobile TV: examining psychological flow and media content. Comput. Human Behav 25(1), 123–129 (2009)CrossRefGoogle Scholar
  24. 24.
    Junglas, I., Abraham, C., Watson, R.T.: Task-technology fit for mobile locatable information systems. Decis. Support Syst. 45(4), 1046–1057 (2008)CrossRefGoogle Scholar
  25. 25.
    Kim, B., Oh, J.: The difference of determinants of acceptance and continuance of mobile data services: a value perspective. Expert Syst. Appl. 38(3), 1798–1804 (2010)CrossRefGoogle Scholar
  26. 26.
    Kim, D.J., Hwang, Y.: A study of mobile internet user’s service quality perceptions from a user’s utilitarian and hedonic value tendency perspectives. Inf. Syst. Frontier 14(2), 409–421 (2012)CrossRefGoogle Scholar
  27. 27.
    Kim, H.W., Xu, Y., Koh, J.: A comparison of online trust building factors between potential customers and repeat customers. J. Assoc. Inf. Syst 5(10), 392–420 (2004)Google Scholar
  28. 28.
    Kuo, Y.-F., Wu, C.-M., Deng, W.-J.: The relationships among service quality, perceived value, customer satisfaction, and post-purchase intention in mobile value-added services. Comput. Human Behav 25(4), 887–896 (2009)CrossRefGoogle Scholar
  29. 29.
    Lee, K.C., Chung, N.: Understanding factors affecting trust in and satisfaction with mobile banking in Korea: a modified DeLone and McLean’s model perspective. Interact. Comput. 21(5–6), 385–392 (2009)CrossRefGoogle Scholar
  30. 30.
    Lee, K.C., Kang, I.W., McKnight, D.H.: Transfer from offline trust to key online perceptions: an empirical study. IEEE Trans. Eng. Manag 54(4), 729–741 (2007)CrossRefGoogle Scholar
  31. 31.
    Lee, S., Shin, B., Lee, H.G.: Understanding post-adoption usage of mobile data services: the role of supplier-side variables. J. Assoc. Inf. Syst 10(12), 860–888 (2009)Google Scholar
  32. 32.
    Liang, T.P., Yeh, Y.H.: Effect of use contexts on the continuous use of mobile services: the case of mobile games. Pers. Ubiquitous Comput 15(2), 187–196 (2011)CrossRefGoogle Scholar
  33. 33.
    Lin, H.-F.: An empirical investigation of mobile banking adoption: the effect of innovation attributes and knowledge-based trust. Int. J. Inf. Manag 31(3), 252–260 (2011)CrossRefGoogle Scholar
  34. 34.
    Liu, C.T., Guo, Y.M., Lee, C.H.: The effects of relationship quality and switching barriers on customer loyalty. Int. J. Inf. Manag 31(1), 71–79 (2011)CrossRefGoogle Scholar
  35. 35.
    Malhotra, N.K., Kim, S.S., Patil, A.: Common method variance in IS research: a comparison of alternative approaches and a reanalysis of past research. Manag. Sci 52(12), 1865–1883 (2006)CrossRefGoogle Scholar
  36. 36.
    Mallat, N.: Exploring consumer adoption of mobile payments—A qualitative study. J. Strateg. Inf. Syst 16(4), 413–432 (2007)CrossRefGoogle Scholar
  37. 37.
    Ngai, E.W.T., Gunasekaran, A.: A review for mobile commerce research and applications. Decis. Support Syst. 43(1), 3–15 (2007)CrossRefGoogle Scholar
  38. 38.
    Nunnally, J.C.: Psychometric theory. McGraw-Hill, New York (1978)Google Scholar
  39. 39.
    O’Cass, A., Carlson, J.: Examining the effects of website induced flow in professional sporting team websites. Internet Res 20(2), 115–134 (2010)CrossRefGoogle Scholar
  40. 40.
    Park, J., Yang, S., Lehto, X.: Adoption of mobile technologies for Chinese consumers. J. Electron. Commer. Res 8(3), 196–206 (2007)Google Scholar
  41. 41.
    Podsakoff, P.M., Organ, D.W.: Self-reports in organizational research: problems and prospects. J. Manag 12(4), 531–544 (1986)Google Scholar
  42. 42.
    Reichheld, F.F., Schefter, P.: E-loyalty: your secret weapon on the Web. Harv. Bus. Rev 7–8, 105–113 (2000)Google Scholar
  43. 43.
    Rogers, E.M.: Diffusion of Innovations. The Free Press, New York (1983)Google Scholar
  44. 44.
    Schierz, P.G., Schilke, O., Wirtz, B.W.: Understanding consumer acceptance of mobile payment services: an empirical analysis. Electron. Commer. Res. Appl. 9(3), 209–216 (2010)CrossRefGoogle Scholar
  45. 45.
    Shin, Y.M., Lee, S.C., Shin, B., Lee, H.G.: Examining influencing factors of post-adoption usage of mobile internet: focus on the user perception of supplier-side attributes. Inf. Syst. Frontier 12(5), 595–606 (2010)CrossRefGoogle Scholar
  46. 46.
    Straub, D., Boudreau, M.-C., Gefen, D.: Validation guidelines for IS positivist research. Commun. Assoc. Inf. Syst 13, 380–427 (2004)Google Scholar
  47. 47.
    Suki, N.M., Ramayah, T., Ly, K.K.: Empirical investigation on factors influencing the behavioral intention to use Facebook. Univers. Access Inf. Soc 11(2), 223–231 (2012)CrossRefGoogle Scholar
  48. 48.
    Teo, T.S.H., Srivastava, S.C., Jiang, L.: Trust and electronic government success: an Empirical Study. J. Manag. Inf. Syst 25(3), 99–131 (2009)CrossRefGoogle Scholar
  49. 49.
    Thong, J.Y.L., Venkatesh, V., Xu, X., Hong, S.-J., Tam, K.Y.: Consumer acceptance of personal information and communication technology services. IEEE Trans. Eng. Manag 58(4), 613–625 (2011)CrossRefGoogle Scholar
  50. 50.
    Van der Heijden, H.: User acceptance of hedonic information systems. MIS Q 28(4), 695–704 (2004)Google Scholar
  51. 51.
    Venkatesh, V., Davis, F.D.: A theoretical extension of the technology acceptance model: four longitudinal field studies. Manag. Sci 46(2), 186–204 (2000)CrossRefGoogle Scholar
  52. 52.
    Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: toward a unified view. MIS Q 27(3), 425–478 (2003)Google Scholar
  53. 53.
    Wang, L.C., Baker, J., Wagner, J.A., Wakefield, K.: Can a retail web site be social? J. Mark 71, 143–157 (2007)CrossRefGoogle Scholar
  54. 54.
    Wixom, B.H., Todd, P.A.: A Theoretical Integration of user satisfaction and technology acceptance. Inf. Syst. Res 16(1), 85–102 (2005)CrossRefGoogle Scholar
  55. 55.
    Wu, I.-L., Li, J.-Y., Fu, C.-Y.: The adoption of mobile healthcare by hospital’s professionals: an integrative perspective. Decis. Support Syst. 51(3), 587–596 (2011)CrossRefGoogle Scholar
  56. 56.
    Wu, J–.J., Chang, Y.-S.: Towards understanding members’ interactivity, trust, and flow in online travel community. Ind. Manag. Data Syst 105(7), 937–954 (2005)CrossRefGoogle Scholar
  57. 57.
    Yuan, Y., Archer, N., Connelly, C.E., Zheng, W.: Identifying the ideal fit between mobile work and mobile work support. Inf. Manag 47(3), 125–137 (2010)CrossRefGoogle Scholar
  58. 58.
    Zaman, M., Anandarajan, M., Dai, Q.: Experiencing flow with instant messaging and its facilitating role on creative behaviors. Comput. Human Behav 26(5), 1009–1018 (2010)CrossRefGoogle Scholar
  59. 59.
    Zhang, Y., Fang, Y., Wei, K-.K., Ramsey, E., McCole, P., Chen, H.: Repurchase intention in B2C e-commerce—A relationship quality perspective. Inf. Manag 48(6), 192–200 (2011)CrossRefGoogle Scholar
  60. 60.
    Zhou, T.: Examining the critical success factors of mobile website adoption. Online Inf. Rev 35(4), 636–652 (2011)CrossRefGoogle Scholar
  61. 61.
    Zhou, T.: Understanding mobile Internet continuance usage from the perspectives of UTAUT and flow. Inf. Dev 27(3), 207–218 (2011)CrossRefGoogle Scholar
  62. 62.
    Zhou, T., Lu, Y.: Examining mobile instant messaging user loyalty from the perspectives of network externalities and flow experience. Comput. Human Behav 27(2), 883–889 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of ManagementHangzhou Dianzi UniversityHangzhouPeople’s Republic of China

Personalised recommendations