Advertisement

Universal Access in the Information Society

, Volume 10, Issue 3, pp 275–293 | Cite as

User modelling and cognitive user support: towards structured development

  • Peter Eberle
  • Christian Schwarzinger
  • Christian Stary
Long Paper

Abstract

Model-driven engineering approaches have turned out useful when handling different perspectives on human–computer interaction, such as user profiles and problem-domain data. Their latest flavour, Model-Driven Architecture (MDA®), targets towards platform-independent models (PIMs) and adjacent transformation mechanisms to adapt to user needs and tasks. Although in the field of user modelling and its major application domain, namely adaptive hypermedia systems (AHS), considerable effort has been spent on adaptation towards user needs, a structured development approach could not be established so far. User-oriented application designs are highly distinctive and can hardly be compared or mapped to novel or existing developments without major re-engineering effort. This paper develops an understanding of existing capabilities of already applied user-modelling techniques from a model-based perspective. Revealing the context of user models and user modelling allows determining general concepts for representing and processing knowledge for adaptation. The obtained findings show primarily technically motivated approaches, rather than designs grounded in findings from human factors. For human-centred design, a shift is suggested towards distributed cognition as a methodological and operational frame of reference for user modelling. This could help overcome existing limitations in adaptation. The corresponding research agenda requires directions on how to map psychological constructs to user-model elements and adaptable user-interface elements, such as mapping field dependence to content annotation features, in a transparent and empirically grounded way.

Keywords

User modelling Model-driven architecture Adaptation Cognitive support Psychological constructs Transformation Adaptive hypermedia systems 

References

  1. 1.
    Adams, R.: Natural computing and interactive system design, p. 2005. Pearson, London (2005)Google Scholar
  2. 2.
    Barnard, P.: The contributions of applied cognitive psychology to the study of human–computer interaction. In: Shackel, B., Richardson, S. (eds.) Human factors for informatics usability, pp. 151–182. University Press, Cambridge (1991)Google Scholar
  3. 3.
    Billsus, D., Pazzani, M.: Learning probabilistic user models. Sixth international conference on User Modeling UM97, Workshop machine learning for user modeling (1997)Google Scholar
  4. 4.
    Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Model. User Adapt. Interact. 5(2–3), 87–129 (1996)CrossRefGoogle Scholar
  5. 5.
    Brusilovsky, P., Cooper, D.W.: Domain, task and user models for an adaptive hypermedia performance support system. In: Gil, Y., Leake, D.B. (eds.), Proceedings of 2002 international conference on intelligent user interfaces, pp. 23–30. San Francisco: ACM Press (2002)Google Scholar
  6. 6.
    Brusilovsky, P., Peylo, C.: Adaptive and intelligent web-based educational systems. In: Int. J. Artif. Intell. Educ. 13, Press, 156–169 (2003)Google Scholar
  7. 7.
    Calvi, L., Cristea, A.: Towards generic adaptive systems: analysis of a case study. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) Adaptive hypermedia and adaptive web-based systems, pp. 174–183. Springer, Berlin (2002)Google Scholar
  8. 8.
    Chen, S.Y., Macredie, R.D.: Cognitive styles and hypermedia navigation: development of a learning model. J. Am. Soc. Inform. Sci. Technol. 53(1), 3–15 (2002)CrossRefGoogle Scholar
  9. 9.
    Conlan, O., Wade, V., Bruen, C., Grgan, M.: Multi-model, metadata driven approach to adaptive hypermedia services for personalized eLearning. In: De Brab, P., Brusilovsky, P., Conejo, R. (eds.) Adaptive hypermedia and adaptive web-based systems, pp. 100–111. Springer, Berlin (2002)Google Scholar
  10. 10.
    De Bra, P., Aerts, A., Smits, D., Stash, N.: AHA! Version 2.0 more adaptation flexibility for authors. In: Proceedings of the AACE ELearn’2002 conference, pp. 240–246 (2002)Google Scholar
  11. 11.
    Eagan, D.E.: Individual differences in human–computer interaction. Handbook of human–computer interaction. Elsevier (North Holland), Amsterdam (1988)Google Scholar
  12. 12.
    Fischer, G.: User modeling in human–computer interaction. User Model. User Adapt. Interact. 11, 65–86 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Forbrig, P.: Objektorientierte Softwareentwicklung mit UML. Hanser, München (2002)Google Scholar
  14. 14.
    Garlatti, S., Iksal, S., Kervella, P.: Adaptive on-line information system by means of a task model and spatial views. In: Proceedings of WWW9 & UM7 2nd workshop on adaptive systems and user modeling on the World Wide Web, pp. 59–66. Available at http://www.contrib.andrew.cmu.edu/plb/WWWUM99workshop/garlatti/garlatti.html (1999)
  15. 15.
    Green, T.R.G., Davies, S.P., Gilmore, D.J.: Delivering cognitive psychology to HCI: the problems of common language and of knowledge transfer. Interact. Comput. 8(1), 89–111 (1996)CrossRefGoogle Scholar
  16. 16.
    Gruhn, V., Pieper, D., Röttgers, C.: MDA®. Effektives Software-Engineering mit UML2® und Eclipse™. Springer, Berlin (2006)Google Scholar
  17. 17.
    Henze, N., Nejdl, W.: Knowledge modelling for open adaptive hypermedia. In: De Brab, P., Brusilovsky, P., Conejo, R. (eds.) Adaptive hypermedia and adaptive web-based systems, pp. 174–183. Springer, Berlin (2002)Google Scholar
  18. 18.
    Höök, K.: Evaluating the utility and usability of an adaptive hypermedia system. In: Moore, J., Edmonds, E., Puerta, A. (eds.) Proceedings of 1997 international conference on intelligent user interfaces, pp. 179–186. Orlando: ACM (1997)Google Scholar
  19. 19.
    Höök, K., Karlgreen, J., Waern, A.: A glass box intelligent help interface. In: Lee, J. (eds.) Intelligence and multimodality in multimedia interfaces: research and applications—proceedings of the IMMI-95 workshop, Edinburgh. Menlo Park: AAAI Press (1995)Google Scholar
  20. 20.
    Janetzko, D.: Learning user models via knowledge tracking. Sixth international conference on user modeling UM97, Workshop machine learning for user modeling (1997)Google Scholar
  21. 21.
    Kellogg, T., Gmytrasiewicz, P.J.: Bayesian belief update in multi agent systems. Sixth international conference on user modeling UM97, Workshop machine learning for user modeling (1997)Google Scholar
  22. 22.
    Kieras, D.E., Wood, S., Meyer, D.E.: Predictive engineering models based on the EPIC architecture for multimodal high-performance human–computer interaction task. Trans. Comput. Human Interact. 4(3), 230–275 (1997)CrossRefGoogle Scholar
  23. 23.
    Kitajima, M., Polson, P.G.: A comprehension-based model of exploration. Human. Comput. Interact. 12(4), 345–389 (1997)CrossRefGoogle Scholar
  24. 24.
    Koch, N., Wirsing, M.: The Munich reference model for adaptive hypermedia applications. In: De Brab, P., Brusilovsky, P., Conejo, R. (eds.) Adaptive hypermedia and adaptive web-based systems, pp. 213–221. Springer, Berlin (2002)Google Scholar
  25. 25.
    Miller, J., Mukerji, J.: MDA® Guide, OMG (2003)Google Scholar
  26. 26.
    Petrasch, R., Meimberg, O.: Model-driven architecture. Eine praxisgerechte Einführung in die MDA, dpunkt, Heidelberg (2006)Google Scholar
  27. 27.
    Pohl, W., Nick, A.: Machine learning and knowledge representation in the LaboUr approach to user modelling. In: Kay, J. (eds.) Proceedings of the 7th international conference on user modelling, pp. 179–188. Wien: Springer (1999)Google Scholar
  28. 28.
    Staff, C.D.: The HyperContext framework for adaptive hypertext. In: Proceedings of the thirteenth ACM conference on hypertext and hypermedia, pp. 11–20. New York: ACM Press (2002)Google Scholar
  29. 29.
    Szekely, P.A.: Retrospective and challenges for model-based interface development In: Proceedings of computer-aided design of user interfaces—CADUI’96, xxi–xliv (1996)Google Scholar
  30. 30.
    Walenstein, A.: Foundations of cognitive support: toward abstract patterns of usefulness. In: Forbrig, P., Limbourg, Q., Urban, B., Vanderdonckt, J. (eds.) Interactive systems. Design, specification, and verification, 9th international workshop, DSV-IS 2002, Rostock Germany, pp. 133–147. Springer (2002)Google Scholar
  31. 31.
    Webb, G.I., Pazzani, M.J., Billsus, D.: Machine learning for user modelling. User Model. User Adapt. Interact. 11, 19–29 (2001)zbMATHCrossRefGoogle Scholar
  32. 32.
    Witkin, H.A.: Perception of the body position and of the position of the visual field. Percept. Monogr. 63, 145–170 (1949)Google Scholar
  33. 33.
    Wright, P., Fields, B., Harrison, M.: Analysing human computer interaction as distributed cognition: the resources model. Human Comput. Interact. 15(1), 1–42 (2000)CrossRefGoogle Scholar
  34. 34.
    Wu, H., de Koert, E., de Bra, P.: Design issues for general purpose adaptive hypermedia systems. In: Proceedings of the twelfth ACM conference on hypertext and hypermedia, pp. 141–150. New York: ACM Press (2001)Google Scholar
  35. 35.
    Zukerman, I., Albrecht, D.W.: Predictive statistical models for user modeling. User Model. User Adapt. Interact. 11, 5–18 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Peter Eberle
    • 1
  • Christian Schwarzinger
    • 1
  • Christian Stary
    • 1
  1. 1.Department of Business Information Systems, Communications EngineeringUniversity of LinzFreistädterstraße 315Austria

Personalised recommendations