Universal Access in the Information Society

, Volume 9, Issue 4, pp 311–325 | Cite as

Making it easier for older people to talk to smart homes: the effect of early help prompts

  • K. Maria Wolters
  • Klaus-Peter Engelbrecht
  • Florian Gödde
  • Sebastian Möller
  • Anja Naumann
  • Robert Schleicher
Long Paper


It is well known that help prompts shape how users talk to spoken dialogue systems. This study investigated the effect of help prompt placement on older users’ interaction with a smart home interface. In the dynamic help condition, help was only given in response to system errors; in the inherent help condition, it was also given at the start of each task. Fifteen older and sixteen younger users interacted with a smart home system using two different scenarios. Each scenario consisted of several tasks. The linguistic style users employed to communicate with the system (interaction style) was measured using the ratio of commands to the overall utterance length (keyword ratio) and the percentage of content words in the user’s utterance that could be understood by the system (shared vocabulary). While the timing of help prompts did not affect the interaction style of younger users, it was early task-specific help supported older users in adapting their interaction style to the system’s capabilities. Well-placed help prompts can significantly increase the usability of spoken dialogue systems for older people.


Spoken dialogue systems Usability Older adults Smart homes Help prompts 



This study was carried out within the project MeMo (Usability Workbench for Rapid Product Development) funded by Deutsche Telekom AG. The authors would like to thank the whole MeMo team for their support, in particular Marc Hümmer (formerly Fraunhofer FIT, Birlinghofen) and Thimios Dimopulos (formerly DAI-Labor, TU Berlin) for setting up and running the experiment. The MATCH project (Scottish Funding Council grant no. HR04016) funded Maria Wolters’ contribution as well as a two-week research visit to Edinburgh by Florian Gödde. Part of this study was presented at the University of Edinburgh Dialogue Systems Group. We thank the group members for their comments and Johanna Moore and David Milward for additional references. Last but not least we would like to thank our three anonymous reviewers for their detailed and insightful comments.


  1. 1.
    Akaike, H.: A new look at statistical model identification. IEEE Trans. Automat. Contr. 19, 716–722 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alexandersson, J.: i2home—towards a universal home environment for the elderly and disabled. Künstliche Intelligenz 08(3), 66–68 (2008)Google Scholar
  3. 3.
    Anderson, S., Liberman, N., Bernstein, E., Foster, S., Cate, E., Levin, B., Hudson, R.: Recognition of elderly speech and voice-driven document retrieval. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Phonenix, Arizona, 1999Google Scholar
  4. 4.
    Audit Commission.: Implementing telecare: strategic guidelines for policy makers, commissioners and providers. Technical report, Audit Commission, Public Sector National Report, London UK, 2004Google Scholar
  5. 5.
    Baber, C., Mellor, B., Graham, R., Noyes, J.M., Tunley, C.: Workload and the use of automatic speech recognition: the effects of time and resource demands. Speech Commun. 20, 37–53 (1996)CrossRefGoogle Scholar
  6. 6.
    Baeckman, L., Small, B.J., Wahlin, A.: Aging and memory: cognitive and biological perspectives. In: Birren, J.E., Schaie, K.W. (eds.) Handbook of the Psychology of Aging, pp. 349–377. Academic Press, San Diego (2001)Google Scholar
  7. 7.
    Bickmore, T., Giorgino, T.: Health dialog systems for patients and consumers. J. Biomed. Inform. 39, 556–571 (2006)CrossRefGoogle Scholar
  8. 8.
    Black, L.-A., McMeel, C., McTear, M., Black, N., Harper, R., Lemon, M.: Implementing autonomy in a diabetes management system. J. Telemed. Telecare 11(Suppl 1), 6–8 (2005)CrossRefGoogle Scholar
  9. 9.
    Black, L.-A., McTear, M., Black, N., Harper, R., Lemon, M.: Evaluating the DI@L-LOG system on a cohort of elderly, diabetic patients: results from a preliminary study. In: Proceedings of Interspeech, Lisbon, Portugal, pp. 821–824, 2005Google Scholar
  10. 10.
    Boger, J., Hoey, J., Poupart, P., Boutilier, C., Fernie, G., Mihailidis, A.: A planning system based on markov decision processes to guide people with dementia through activities of daily living. IEEE Trans. Inf. Technol. Biomed. 10(2), 323–333 (2006)CrossRefGoogle Scholar
  11. 11.
    Bohus, D., Rudnicky, A.: Sorry, I didn’t catch that!—An investigation of non-understanding errors and recovery strategies. In: Proceedings of the 6th SIGDial Workshop on Discourse and Dialogue, Lisbon, Portugal, pp. 128–143, 2005Google Scholar
  12. 12.
    Boland, H., Hoonhout, J., van Schijndel, C., Krebber, J., Melichar, M., Schuchardt, D., Baesekow, H., Pegam, R., Möller, S., Rajman, M., Smeele, P.: Turn on the lights: investigating the inspire voice controlled smart home system. In: Proceedings of the Human Factors and Ergonomics Society Europe Chapter, Delft University, NL, 2004Google Scholar
  13. 13.
    Bopp, K.L., Verhaeghen, P.: Aging and verbal memory span: a meta-analysis. J. Gerontol. B Psychol. Sci. Soc. Sci. 60, P223–P233 (2005)Google Scholar
  14. 14.
    Branigan, H., Pickering, M.J., Pearson, J., McNeil, J.F.: Linguistic alignment between humans and computers. J. Pragmat. (2009) (in press)Google Scholar
  15. 15.
    Branigan, H.P., Pickering, M.J., Pearson, J., McLean, J.F., Nass, C.I., Hu, J.: Beliefs about mental states in lexical and syntactic alignment: evidence from human-computer dialogs. In: Proceedings of the 17th CUNY Conference on Human Sentence Processing, 2004Google Scholar
  16. 16.
    Brennan, S.E., Clark, H.H.: Conceptual pacts and lexical choice in conversation. J. Exp. Psychol. Learn. Mem. Cogn. 22(6), 1482–1493 (1996)CrossRefGoogle Scholar
  17. 17.
    Bugg, J.M., Zook, N.A., DeLosh, E.L., Davalos, D.B., Davis, H.P.: Age differences in fluid intelligence: contributions of general slowing and frontal decline. Brain Cogn. 62, 9–16 (2006)CrossRefGoogle Scholar
  18. 18.
    Carenini, G., Moore, J.D.: Generating and evaluating evaluative arguments. Artif. Intell. 170(11), 925–952 (2006)CrossRefGoogle Scholar
  19. 19.
    Carletta, J.: Unleashing the killer corpus: experiences in creating the multi-everything AMI Meeting Corpus. Lang. Res. Eval. 41(2), 181–190 (2007)CrossRefGoogle Scholar
  20. 20.
    Charlton, R.A., Landau, S., Schiavone, F., Barrick, T.R., Clark, C.A., Markus, H.S., Morris, R.G.: A structural equation modeling investigation of age related variance in executive function and DTI measured white matter damage. Neurobiol. Aging 29, 1547–1555 (2007)CrossRefGoogle Scholar
  21. 21.
    Chu, S.-W., O’Neill, I., Hanna, P.: Using multiple strategies to manage spoken dialogue. In: Proceedings of Interspeech, Antwerp, Belgium, 2007Google Scholar
  22. 22.
    Clarke, K., Lewin, M., Atkins, D., Kalawsky, R.: Testing a framework for multimodal control in the home environment. In: Proceedings of the IEE Workshop on Perspectives in Pervasive Computing, pp. 87–95, 2005Google Scholar
  23. 23.
    Czaja, S., Lee, C.: The impact of aging on access to technology. Univ. Access Inf. Soc. 5, 341–349 (2007)CrossRefGoogle Scholar
  24. 24.
    Czaja, S.J., Charness, N., Fisk, A.D., Hertzog, C., Nair, S.N., Rogers, W.A., Sharit, J.: Factors predicting the use of technology: findings from the center for research and education on aging and technology enhancement (CREATE). Psychol. Aging 21, 333–352 (2006)CrossRefGoogle Scholar
  25. 25.
    Dahlbaeck, N., Joensson, A., Ahrenberg, L.: Wizard of Oz studies—why and how. Knowl. Based Syst. 6, 258–266 (1993)CrossRefGoogle Scholar
  26. 26.
    Fukubayashi, Y., Komatani, K., Ogata, T., Okuno, H.G.: Dynamic help generation by estimating users mental model in spoken dialogue systems. In: Proceedings of Interspeech, pp. 1750–1753, 2006Google Scholar
  27. 27.
    Georgila, K., Wolters, M., Karaiskos, V., Kronenthal, M., Logie, R., Mayo, N., Moore, J., Watson, M.: A fully annotated corpus for studying the effect of cognitive ageing on users’ interactions with spoken dialogue systems. In: Proceedings of the 6th International Conference on Language Resources and Evaluation, 2008Google Scholar
  28. 28.
    Gödde, F., Möller, S., Engelbrecht, K.-P., Kühnel, C., Schleicher, R., Naumann, A., Wolters, M.: Study of a speech-based smart home system with older users. In: International Workshop on Intelligent User Interfaces for Ambient Assisted Living, pp. 17–22, 2008Google Scholar
  29. 29.
    Gorrell, G., Letwin, I., Rayner, M.: Adding intelligent help to mixed-initiative spoken dialogue systems. In: Proceedings of ICSLP, pp. 2065–2068, 2002Google Scholar
  30. 30.
    Gregor, P., Newell, A.F., Zajicek, M.: Designing for dynamic diversity—interfaces for older people. In: Proceedings of ASSETS 2002, The Fifth International ACM Conference on Assistive Technologies, Edinburgh UK, pp. 151–156, 2002Google Scholar
  31. 31.
    Hamilton, F., Petrie, H., Carmichael, A.: The VISTA project: universal access to electronic programme guides for digital TV. In: Stephanidis, C. (ed.) Universal Access in HCI: Inclusive Design in the Information Society, pp. 842–846. Lawrence Erlbaum, Mahwah (2003)Google Scholar
  32. 32.
    Hawley, M., Cunningham, S., Cardinaux, F., Coy, A., O’Neill, P., Seghal, S., Enderby, P.: Challenges in developing a voice input voice output communication aid for people with severe dysarthria. In: Eizmendi, G., Azkoitia, J., Craddock, G. (eds.) Challenges for Assistive Technology (Proceedings of the AAATE), pp. 363–367. IOS Press, Amsterdam, NL (2007)Google Scholar
  33. 33.
    Hawthorn, D.: Possible implications of aging for interface designers. Interact. Comput. 12, 507–528 (2000)CrossRefGoogle Scholar
  34. 34.
    Hockey, B.A., Lemon, O., Campana, E., Hiatt, L.M., Aist, G., Hieronymus, J., Dowding, J., Gruenstein, A.: Targeted help for spoken dialogue systems. In: Proceedings of the 10th Conference of the European Chapter of the Association for Computational Linguistics, pp. 147–154, 2003Google Scholar
  35. 35.
    Hone, K.S., Graham, R.: Towards a tool for the subjective assessment of speech system interfaces (SASSI). Nat. Lang. Eng. 6, 287–305 (2000)CrossRefGoogle Scholar
  36. 36.
    ISO Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs)—Part 11: Guidance on Usability (1998)Google Scholar
  37. 37.
    ITU-T Rec. P.851. Subjective Quality Evaluation of Telephone Services Based on Spoken Dialogue Systems. International Telecommunication Union, Geneva (2003)Google Scholar
  38. 38.
    Jokinen, K.: Adaptation and user expertise modelling in athosmail. Univ. Access Inf. Soc. 4(4), 374–392 (2006)CrossRefGoogle Scholar
  39. 39.
    Keates, S., Clarkson, J.: Inclusive Design. Springer, London (2004)Google Scholar
  40. 40.
    Kemper, S., Mitzner, T.L.: Language production and comprehension. In: Birren, J.E., Schaie, K.W. (eds.) Handbook of the Psychology of Aging, pp. 378–398. Acadmic Press, San Diego (2001)Google Scholar
  41. 41.
    Kemper, S., Sumner, A.: The structure of verbal abilities in young and older adults. Psychol. Aging 16(2), 312–322 (2001)CrossRefGoogle Scholar
  42. 42.
    Leiser, R.G.: Exploiting convergence to improve natural language understanding. Interact. Comput. 1, 284–298 (1989)CrossRefGoogle Scholar
  43. 43.
    Lines, L., Hone, K.S.: Older adults’ comprehension and evaluation of speech as alarm system output within the domestic environment. In: Proceedings of the 2nd International Conference on Universal Access in Human Computer Interaction, Crete, Greece, 2003Google Scholar
  44. 44.
    Lines, L., Hone, K.S.: Eliciting user requirements with older adults: lessons from the design of an interactive domestic alarm system. Univ. Access Inf. Soc. 3, 141–148 (2004)CrossRefGoogle Scholar
  45. 45.
    Litman, D., Hirschberg, J., Swerts, M.: Predicting automatic speech recognition performance using prosodic cues. In: Proceedings of NAACL, pp. 218–225, 2000Google Scholar
  46. 46.
    McTear, M., O’Neill, I., Hanna, P., Liu, X.: Handling errors and determining confirmation strategies—an object-based approach. Speech Commun. 45, 249–269 (2005)CrossRefGoogle Scholar
  47. 47.
    Möller, S.: Quality of Telephone-Based Spoken Dialogue Systems. Springer, New York (2005)Google Scholar
  48. 48.
    Möller, S., Engelbrecht, K.-P., Oulasvirta, A.: Analysis of communication failures for spoken dialogue systems. In: Proceedings of Interspeech, 2007Google Scholar
  49. 49.
    Möller, S., Gödde, F., Wolters, M.: A corpus analysis of spoken smart-home interactions with older users. In: Proceedings of the 6th International Conference on Language Resources and Evaluation, 2008Google Scholar
  50. 50.
    Möller, S., Krebber, J., Raake, A., Smeele, P., Rajman, M., Melichar, M., Pallotta, V., Tsakou, G., Kladis, B., Vovos, A., Hoonhout, J., Schuchardt, D., Fakotakis, N., Ganchev, T., Potamitis, I.: INSPIRE: evaluation of a smart-home system for infotainment management and device control. In: Proceedings of the 4th International Conference on Language Resources and Evaluation, pp. 1603–1606, Lisbon, Portugal, 2004Google Scholar
  51. 51.
    Möller, S., Krebber, J., Smeele, P.: Evaluating the speech output component of a smart-home system. Speech Commun. 48, 1–27 (2006)CrossRefGoogle Scholar
  52. 52.
    Moore, J., Kronenthal, M., Ashby, S.: Guidelines for AMI speech transcriptions. Technical report, AMI Deliverable, 2005Google Scholar
  53. 53.
    Müller, C., Wittig, F., Baus, J.: Exploiting speech for recognizing elderly users to respond to their special needs. In: Proceedings of Eurospeech, pp. 1305–1308, 2003Google Scholar
  54. 54.
    Norman, D.A.: The Design of Everyday Things. MIT Press, London, UK, paperback edition (1988/1998)Google Scholar
  55. 55.
    Oviatt, S., Darves, C., Coulston, R.: Toward adaptive conversational interfaces: modeling speech convergence with animated personas. ACM Trans. Comput. Hum. Interact. 11(3) (2004)Google Scholar
  56. 56.
    Pearson, J., Hu, J., Branigan, H.P., Pickering, M., Nass, C.: Adaptive language behavior in HCI: how expectations and beliefs about a system affect users’ word choice. In: Proceedings of CHI, 2006Google Scholar
  57. 57.
    Pennebaker, J.W., King, L.A.: Linguistic styles: language use as an individual difference. J. Pers. Soc. Psychol. 77, 1296–1312 (1999)CrossRefGoogle Scholar
  58. 58.
    Perry, M., Dowdall, A., Lines, L., Hone, K.: Multimodal and ubiquitous computing systems: supporting independent-living older users. IEEE Trans. Inf. Technol. Biomed. 8, 258–270 (2004)CrossRefGoogle Scholar
  59. 59.
    Persad, U., Langdon, P., Clarkson, J.: Characterising user capabilities to support inclusive design evaluation. Univ. Access Inf. Soc. 6(2), 119–153 (2007)CrossRefGoogle Scholar
  60. 60.
    Pickering, M.J., Ferreira, V.S.: Structural priming: a critical review. Psychol. Bull. 134(3), 427–459 (2008)CrossRefGoogle Scholar
  61. 61.
    Pickering, M.J., Garrod, S.: Toward a mechanistic psychology of dialogue. Behav. Brain. Sci. 27, 169–226 (2004)Google Scholar
  62. 62.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2006)Google Scholar
  63. 63.
    Rabbitt, P., Anderson, M.: The lacunae of loss? Aging and the differentiation of cognitive abilities. In: Bialystok, E., Craik, F.I. (eds.) Lifespan Cognition: Mechanisms of Change, chapter 23. Oxford University Press, New York (2006)Google Scholar
  64. 64.
    Rabbitt, P., Diggle, P., Holland, F., McInnes, L.: Practice and drop-out effects during a 17-year longitudinal study of cognitive aging. J. Gerontol. B Psychol. Sci. Soc. Sci. 59, 84–97 (2004)Google Scholar
  65. 65.
    Rajman, M., Bui, T.H., Rajman, A., Seydoux, F., Trutnev, A., Quarteroni, S.: Assessing the usability of a dialogue management system designed in the framework of a rapid dialogue prototyping methodology. ACTA ACUSTICA/Acustica 90(6), 1096–1111 (2004)Google Scholar
  66. 66.
    Ramig, L.O., Gray, S., Baker, K., Corbin-Lewis, K., Buder, E., Luschei, E., Coon, H., Smith, M.: The aging voice: a review, treatment data and familial and genetic perspectives. Folia Phoniatr. Logop. 53, 252–265 (2001)CrossRefGoogle Scholar
  67. 67.
    Raux, A., Bohus, D., Langner, B., Black, A., Eskenazi, M.: Doing research on a deployed spoken dialogue system: one year of let’s go! experience. In: Proceedings of Interspeech, 2006Google Scholar
  68. 68.
    Rayner, M., Bouillon, P., Chatzichrisafis, N., Hockey, B.A., Santaholma, M., Starlander, M., Isahara, H., Kanzaki, K., Nakao, Y.: A methodology for comparing grammar-based and robust approaches to speech understanding. In: Proceedings of Interspeech, pp. 1877–1880, 2005Google Scholar
  69. 69.
    Ringle, M.D., Halstead-Nussloch, R.: Shaping user input: a strategy for natural language dialogue design. Interact. Comput. 1, 227–244 (1989)CrossRefGoogle Scholar
  70. 70.
    Salthouse, T.A.: Mediation of adult age differences in cognition by reductions in working memory and speed of processing. Psychol. Sci. 2, 179–183 (1991)CrossRefGoogle Scholar
  71. 71.
    Sheeder, T., Balogh, J.: Say it like you mean it: priming for structure in caller responses to a spoken dialog system. Int. J. Speech Technol. 6, 103–111 (2003)CrossRefGoogle Scholar
  72. 72.
    Stent, A.J., Huffman, M.K., Brennan, S.E.: Adapting speaking after evidence of misrecognition: local and global hyperarticulation. Speech Commun. 50(3), 163–178 (2008)CrossRefGoogle Scholar
  73. 73.
    Unsworth, N., Heitz, R.P., Schrock, J.C., Engle, R.W.: An automated version of the operation span task. Behav. Res. Methods 37, 498–505 (2005)Google Scholar
  74. 74.
    Valles, M., Manso, F., Arredondo, M.T., del Pozo, F.: Multimodal environmental control system for elderly and disabled people. In: Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam, 1996Google Scholar
  75. 75.
    Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S-PLUS, 2nd edn. Springer, New York (1997)zbMATHGoogle Scholar
  76. 76.
    Walker, M.A., Langkilde-Geary, I., Hastie, H.W., Wright, J., Gorin, A.: Automatically training a problematic dialogue predictor for the HMIHY spoken dialogue system. J. Artif. Intell. Res. (2002)Google Scholar
  77. 77.
    Wechsler, D.: Manual for the Wechsler Adult Intelligence Scale-Revised. The Psychological Corporation, New York (1981)Google Scholar
  78. 78.
    Willott, J.F.: Aging and the Auditory System. Singular, San Diego, CA (1991)Google Scholar
  79. 79.
    Yankelovich, N.: How do users know what to say? Interactions. 33–43 (1996)Google Scholar
  80. 80.
    Zajicek, M.: Aspects of HCI research for older people. Univ. Access Inf. Soc. 5(3), 279–286 (2006)CrossRefGoogle Scholar
  81. 81.
    Zajicek, M., Khin Kyaw, Z.: The speech dialogue design for a PDA/web based reminder system. In: Proceedings of the 9th IASTED International Conference on Internet and Multimedia Systems and Applications, Hawaii, pp. 394–399, 2005Google Scholar
  82. 82.
    Zajicek, M., Wales, R., Lee, A.: Speech interaction for older adults. Univ. Access Inf. Soc. 3(2), 122–130 (2004)CrossRefGoogle Scholar
  83. 83.
    Zoltan-Ford, E.: How to get people to say and type what computers can understand. Int. J. Man. Mach. Stud. 34, 527–547 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • K. Maria Wolters
    • 1
  • Klaus-Peter Engelbrecht
    • 2
  • Florian Gödde
    • 2
  • Sebastian Möller
    • 2
  • Anja Naumann
    • 2
  • Robert Schleicher
    • 2
  1. 1.Centre for Speech Technology Research, School of InformaticsUniversity of EdinburghEdinburghScotland, UK
  2. 2.Quality and Usability Lab, Deutsche Telekom Laboratories, Berlin Institute of TechnologyBerlinGermany

Personalised recommendations