Advertisement

Linear Differential Equations as a Data Structure

  • Bruno SalvyEmail author
Article
  • 29 Downloads

Abstract

A lot of information concerning solutions of linear differential equations can be computed directly from the equation. It is therefore natural to consider these equations as a data structure, from which mathematical properties can be computed. A variety of algorithms has thus been designed in recent years that do not aim at “solving,” but at computing with this representation. Many of these results are surveyed here.

Keywords

Computer algebra Linear differential equations Algorithms Complexity 

Mathematics Subject Classification

68W30 33F10 

Notes

Acknowledgements

This work has been supported in part by FastRelax ANR-14-CE25-0018-01.

References

  1. 1.
    Abel, N.H.: Œuvres complètes. Tome II. Éditions Jacques Gabay, Sceaux (1992). Edited and with notes by L. Sylow and S. Lie, Reprint of the second (1881) edition.Google Scholar
  2. 2.
    Abramov, S.A.: Applicability of Zeilberger’s algorithm to hypergeometric terms. In: T. Mora (ed.) ISSAC’2002, pp. 1–7. ACM Press (2002). Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, July 07–10, 2002, Université de Lille, FranceGoogle Scholar
  3. 3.
    Abramov, S.A.: When does Zeilberger’s algorithm succeed? Advances in Applied Mathematics 30(3), 424–441 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Abramowitz, M., Stegun, I.A. (eds.): Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications Inc., New York (1992). Reprint of the 1972 editionGoogle Scholar
  5. 5.
    Almkvist, G., Zeilberger, D.: The method of differentiating under the integral sign. Journal of Symbolic Computation 10, 571–591 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    André, Y.: Séries Gevrey de type arithmétique. I. Théorèmes de pureté et de dualité. Annals of Mathematics. Second Series 151(2), 705–740 (2000)Google Scholar
  7. 7.
    Andrews, G.E.: A general theory of identities of the Rogers-Ramanujan type. Bull. Amer. Math. Soc. 80, 1033–1052 (1974). 10.1090/S0002-9904-1974-13616-5MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Apagodu, M., Zeilberger, D.: Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory. Advances in Applied Mathematics 37(2), 139–152 (2006).  https://doi.org/10.1016/j.aam.2005.09.003 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Balser, W.: From Divergent Power Series to Analytic Functions, Lecture Notes in Mathematics, vol. 1582. Springer-Verlag (1994)Google Scholar
  10. 10.
    Beeler, M., Gosper, R.W., Schroeppel, R.: Hakmem. AI Memo 239, MIT Artificial Intelligence Laboratory (1972). http://hdl.handle.net/1721.1/6086
  11. 11.
    Bellard, F.: Computation of 2700 billion decimal digits of Pi using a desktop computer (2010). http://bellard.org/pi/pi2700e9/. 4th revision.
  12. 12.
    Benoit, A.: Algorithmique semi-numérique rapide des séries de tchebychev. Ph.D. thesis, École polytechnique (2012)Google Scholar
  13. 13.
    Benoit, A., Chyzak, F., Darrasse, A., Gerhold, S., Mezzarobba, M., Salvy, B.: The dynamic dictionary of mathematical functions (DDMF). In: K. Fukuda, J. van der Hoeven, M. Joswig, N. Takayama (eds.) The Third International Congress on Mathematical Software (ICMS 2010), Lecture Notes in Computer Science, vol. 6327, pp. 35–41 (2010).  https://doi.org/10.1007/978-3-642-15582-6_7
  14. 14.
    Benoit, A., Joldeş, M., Mezzarobba, M.: Rigorous uniform approximation of D-finite functions using Chebyshev expansions. Math. Comp. 86(305), 1303–1341 (2017).  https://doi.org/10.1090/mcom/3135 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Benoit, A., Salvy, B.: Chebyshev expansions for solutions of linear differential equations. In: J. May (ed.) ISSAC ’09: Proceedings of the twenty-second international symposium on Symbolic and algebraic computation, pp. 23–30 (2009).  https://doi.org/10.1145/1576702.1576709
  16. 16.
    Bernstein, D.J.: Fast multiplication and its applications. In: Algorithmic number theory: lattices, number fields, curves and cryptography, Math. Sci. Res. Inst. Publ., vol. 44, pp. 325–384. Cambridge Univ. Press, Cambridge (2008)Google Scholar
  17. 17.
    Borwein, J.M., Borwein, P.B.: Pi and the AGM. John Wiley (1987)Google Scholar
  18. 18.
    Borwein, P.B.: On the complexity of calculating factorials. Journal of Algorithms 6(3), 376–380 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Bostan, A.: Algorithmique efficace pour des opérations de base en calcul formel. Ph.D. thesis, École polytechnique (2003)Google Scholar
  20. 20.
    Bostan, A., Boukraa, S., Christol, G., Hassani, S., Maillard, J.M.: Ising n-fold integrals as diagonals of rational functions and integrality of series expansions. Journal of Physics A: Mathematical and Theoretical 45(18), 185,202 (2013).  https://doi.org/10.1088/1751-8113/46/18/185202
  21. 21.
    Bostan, A., Chen, S., Chyzak, F., Li, Z.: Complexity of creative telescoping for bivariate rational functions. In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation (ISSAC 2010), pp. 203–210. ACM Press (2010)Google Scholar
  22. 22.
    Bostan, A., Chen, S., Chyzak, F., Li, Z., Xin, G.: Hermite reduction and creative telescoping for hyperexponential functions. In: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, ISSAC ’13, pp. 77–84. ACM, New York, NY, USA (2013).  https://doi.org/10.1145/2465506.2465946
  23. 23.
    Bostan, A., Chyzak, F., Giusti, M., Lebreton, R., Lecerf, G., Salvy, B., Schost, É.: Algorithmes Efficaces en Calcul Formel. Auto-édition (2017). https://hal.archives-ouvertes.fr/AECF/. 686 pages. Imprimé par CreateSpace. Aussi disponible en version électronique à l’url https://hal.archives-ouvertes.fr/AECF/
  24. 24.
    Bostan, A., Chyzak, F., Lairez, P., Salvy, B.: Generalized Hermite reduction, creative telescoping and definite integration of D-finite functions. In: ISSAC’18—Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, pp. 95–102. ACM Press (2018).  https://doi.org/10.1145/3208976.3208992
  25. 25.
    Bostan, A., Chyzak, F., Lecerf, G., Salvy, B., Schost, É.: Differential equations for algebraic functions. In: C.W. Brown (ed.) ISSAC’07: Proceedings of the 2007 international symposium on Symbolic and algebraic computation, pp. 25–32. ACM Press (2007).  https://doi.org/10.1145/1277548.1277553
  26. 26.
    Bostan, A., Dumont, L., Salvy, B.: Efficient algorithms for mixed creative telescoping. In: ISSAC’16—Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation, pp. 127–134. ACM Press (2016).  https://doi.org/10.1145/2930889.2930907
  27. 27.
    Bostan, A., Dumont, L., Salvy, B.: Algebraic diagonals and walks: Algorithms, bounds, complexity. Journal of Symbolic Computation 83, 68–92 (2017).  https://doi.org/10.1016/j.jsc.2016.11.006 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Bostan, A., Kauers, M.: The complete generating function for Gessel walks is algebraic. Proceedings of the American Mathematical Society 138(9), 3063–3078 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Bostan, A., Lairez, P., Salvy, B.: Creative telescoping for rational functions using the Griffiths-Dwork method. In: M. Kauers (ed.) ISSAC ’13: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, pp. 93–100. ACM Press (2013).  https://doi.org/10.1145/2465506.2465935
  30. 30.
    Bostan, A., Lairez, P., Salvy, B.: Multiple binomial sums. Journal of Symbolic Computation 80(2), 351–386 (2017).  https://doi.org/10.1016/j.jsc.2016.04.002 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Bostan, A., Raschel, K., Salvy, B.: Non-D-finite excursions in the quarter plane. Journal of Combinatorial Theory, Series A 121, 45–63 (2014).  https://doi.org/10.1016/j.jcta.2013.09.005 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Brassinne, E.: Analogie des équations différentielles linéaires à coefficients variables, avec les équations algébriques. In: Note III du Tome 2 du Cours d’analyse de Ch. Sturm, École polytechnique, 2ème édition, pp. 331–347 (1864)Google Scholar
  33. 33.
    Brent, R.P.: The complexity of multiple-precision arithmetic. In: R.S. Anderssen, R.P. Brent (eds.) The complexity of computational problem solving, pp. 126–165. University of Queensland Press, Brisbane (1976)Google Scholar
  34. 34.
    Brent, R.P.: Fast multiple-precision evaluation of elementary functions. Journal of the ACM 23(2), 242–251 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Bronstein, M., Petkovšek, M.: An introduction to pseudo-linear algebra. Theoretical Computer Science 157, 3–33 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Cartier, P.: Démonstration ‘automatique’ d’identités et fonctions hypergéométriques. Astérisque 206, 41–91 (1992). Séminaire BourbakiGoogle Scholar
  37. 37.
    Chen, S., van Hoeij, M., Kauers, M., Koutschan, C.: Reduction-based creative telescoping for fuchsian D-finite functions. J. Symbolic Comput. 85, 108–127 (2018).  https://doi.org/10.1016/j.jsc.2017.07.005 MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Chen, S., Huang, H., Kauers, M., Li, Z.: A modified Abramov-Petkovsek reduction and creative telescoping for hypergeometric terms. In: ISSAC’15: Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, pp. 117–124. ACM, New York, NY, USA (2015).  https://doi.org/10.1145/2755996.2756648
  39. 39.
    Chen, S., Jaroschek, M., Kauers, M., Singer, M.F.: Desingularization explains order-degree curves for ore operators. In: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, ISSAC ’13, pp. 157–164. ACM, New York, NY, USA (2013).  https://doi.org/10.1145/2465506.2465510
  40. 40.
    Chen, S., Kauers, M.: Trading order for degree in creative telescoping. Journal of Symbolic Computation 47(8), 968 – 995 (2012).  https://doi.org/10.1016/j.jsc.2012.02.002 MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Chen, S., Kauers, M., Koutschan, C.: Reduction-based creative telescoping for algebraic functions. In: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC ’16, pp. 175–182. ACM, New York, NY, USA (2016).  https://doi.org/10.1145/2930889.2930901
  42. 42.
    Chen, S., Kauers, M., Singer, M.F.: Telescopers for rational and algebraic functions via residues. In: ISSAC ’12: Proceedings of the twenty-fifth International Symposium on Symbolic and Algebraic Computation (2012)Google Scholar
  43. 43.
    Cheney, E.W.: Introduction to approximation theory. AMS Chelsea Publishing, Providence, RI (1998). Reprint of the second (1982) editionGoogle Scholar
  44. 44.
    Christol, G.: Diagonales de fractions rationnelles et equations différentielles. In: Study group on ultrametric analysis, 10th year: 1982/83, No. 2, pp. Exp. No. 18, 10. Inst. Henri Poincaré, Paris (1984)Google Scholar
  45. 45.
    Christol, G.: Diagonales de fractions rationnelles et équations de Picard-Fuchs. In: Study group on ultrametric analysis, 12th year, 1984/85, 1 (Exp. No. 13), pp. 1–12. Paris (1985)Google Scholar
  46. 46.
    Christol, G.: Diagonals of rational fractions. Eur. Math. Soc. Newsl. (97), 37–43 (2015)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Chudnovsky, D.V., Chudnovsky, G.V.: Applications of Padé approximations to Diophantine inequalities in values of \({G}\)-functions. In: Number theory (New York, 1983–84), no. 1135 in Lecture Notes in Mathematics, pp. 9–51. Springer, Berlin (1985)Google Scholar
  48. 48.
    Chudnovsky, D.V., Chudnovsky, G.V.: Approximations and complex multiplication according to Ramanujan. In: Ramanujan revisited, pp. 375–472. Academic Press, Boston, MA (1988)Google Scholar
  49. 49.
    Chudnovsky, D.V., Chudnovsky, G.V.: The computation of classical constants. Proceedings of the National Academy of Sciences of the USA 86, 8178–8182 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Chudnovsky, D.V., Chudnovsky, G.V.: Computer algebra in the service of mathematical physics and number theory. In: Computers in mathematics (Stanford, CA, 1986), pp. 109–232. Dekker, New York (1990)Google Scholar
  51. 51.
    Churchill, R.C., Kovacic, J.J.: Cyclic vectors. In: Differential Algebra and Related Topics, pp. 191–218. World Scientific (2002).  https://doi.org/10.1142/9789812778437_0007
  52. 52.
    Chyzak, F.: An extension of Zeilberger’s fast algorithm to general holonomic functions. Discrete Mathematics 217(1-3), 115–134 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Chyzak, F.: The ABC of creative telescoping. Mémoire d’habilitation à diriger des recherches, Université Paris-Sud (2014)Google Scholar
  54. 54.
    Chyzak, F., Kauers, M., Salvy, B.: A non-holonomic systems approach to special function identities. In: J. May (ed.) ISSAC ’09: Proceedings of the twenty-second international symposium on Symbolic and algebraic computation, pp. 111–118 (2009).  https://doi.org/10.1145/1576702.1576720
  55. 55.
    Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate holonomic identities. Journal of Symbolic Computation 26(2), 187–227 (1998). 10.1006/jsco.1998.0207MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Cockle, J.: Sketch of a theory of transcendental roots. Philosophical Magazine 20, 145–148 (1860)Google Scholar
  57. 57.
    Coddington, E.A., Levinson, M.: Theory of Ordinary Differential Equations. McGraw-Hill (1955)Google Scholar
  58. 58.
    Cuyt, A., Petersen, V.B., Verdonk, B., Waadeland, H., Jones, W.B.: Handbook of continued fractions for special functions. Springer, New York (2008). With contributions by Franky Backeljauw and Catherine Bonan-Hamada, Verified numerical output by Stefan Becuwe and CuytGoogle Scholar
  59. 59.
    Delabaerre, E.: Divergent Series, Summability and Resurgence III, Lecture Notes in Mathematics, vol. 2155. Springer (2016)Google Scholar
  60. 60.
    Della Dora, J., Tournier, E.: Formal solutions of differential equations in the neighborhood of singular points (regular and irregular). In: SYMSAC ’81: Proceedings of the fourth ACM symposium on Symbolic and algebraic computation, pp. 25–29. ACM, New York, NY, USA (1981). http://doi.acm.org/10.1145/800206.806367
  61. 61.
    Denef, J., Lipshitz, L.: Algebraic power series and diagonals. Journal of Number Theory 26(1), 46–67 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Doetsch, G.: Integraleigenschaften der Hermiteschen Polynome. Math. Z. 32(1), 587–599 (1930).  https://doi.org/10.1007/BF01194654 MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Dwork, B.: On the zeta function of a hypersurface. II. Ann. of Math. (2) 80, 227–299 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Egorychev, G.P.: Integral representation and the computation of combinatorial sums, Translations of Mathematical Monographs, vol. 59. American Mathematical Society, Providence, RI (1984). Translated from the Russian by H. H. McFadden, Translation edited by Lev J. LeifmanGoogle Scholar
  65. 65.
    Fabry, E.: Sur les intégrales des équations différentielles linéaires à coefficients rationnels. Thèse de doctorat ès sciences mathématiques, Faculté des Sciences de Paris (1885)Google Scholar
  66. 66.
    Flajolet, P., Gerhold, S., Salvy, B.: On the non-holonomic character of logarithms, powers, and the nth prime function. The Electronic Journal of Combinatorics 11(2) (2005). http://www.combinatorics.org/Volume_11/PDF/v11i2a2.pdf. A2, 16 pages
  67. 67.
    Flajolet, P., Gerhold, S., Salvy, B.: Lindelöf representations and (non-)holonomic sequences. The Electronic Journal of Combinatorics 17(1), 1–28 (2010). http://www.combinatorics.org/Volume_17/PDF/v17i1r3.pdf
  68. 68.
    Flajolet, P., Odlyzko, A.M.: Singularity analysis of generating functions. SIAM Journal on Discrete Mathematics 3(2), 216–240 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press (2009). http://algo.inria.fr/flajolet. 824 pages (ISBN-13: 9780521898065); also available electronically from the authors’ home pages.
  70. 70.
    Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005 (2009).  https://doi.org/10.1137/070711761 MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Furstenberg, H.: Algebraic functions over finite fields. Journal of Algebra 7(2), 271–277 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Garoufalidis, S., Sun, X.: A new algorithm for the recursion of hypergeometric multisums with improved universal denominator. In: Gems in experimental mathematics, Contemp. Math., vol. 517, pp. 143–156. Amer. Math. Soc., Providence, RI (2010).  https://doi.org/10.1090/conm/517/10138
  73. 73.
    Glasser, M.L., Montaldi, E.: Some integrals involving Bessel functions. Journal of Mathematical Analysis and Applications 183(3), 577–590 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    Glasser, M.L., Zucker, I.J.: Extended Watson integrals for the cubic lattices. Proc. Nat. Acad. Sci. U.S.A. 74(5), 1800–1801 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics. Addison Wesley (1989)Google Scholar
  76. 76.
    Griffiths, P.A.: On the periods of certain rational integrals. I, II. Ann. of Math. (2) 90 (1969), 460-495; ibid. (2) 90, 496–541 (1969)Google Scholar
  77. 77.
    Gutierrez, J., Schicho, J., Weimann, M. (eds.): Computer algebra and polynomials, Lecture Notes in Computer Science, vol. 8942. Springer, Cham (2015). Applications of algebra and number theory, Selected papers from the workshop held at the Johann Radon Institute for Computational and Applied Mathematics (RICAM), Linz, November 25–29, 2013, Lecture Notes in Computer ScienceGoogle Scholar
  78. 78.
    Haible, B., Papanikolaou, T.: Fast multiprecision evaluation of series of rational numbers. In: Algorithmic number theory (Portland, OR, 1998), Lecture Notes in Comput. Sci., vol. 1423, pp. 338–350. Springer, Berlin (1998).  https://doi.org/10.1007/BFb0054873
  79. 79.
    Harley, R.R.: On the theory of the transcendental solution of algebraic equations. Quarterly Journal of Pure and Applied Mathematics 5, 337–360 (1862)Google Scholar
  80. 80.
    Harvey, D., van der Hoeven, J., Lecerf, G.: Even faster integer multiplication. J. Complexity 36, 1–30 (2016).  https://doi.org/10.1016/j.jco.2016.03.001 MathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    Hassani, S., Koutschan, C., Maillard, J.M., Zenine, N.: Lattice Green functions: the \(d\)-dimensional face-centered cubic lattice, \(d=8, 9, 10, 11, 12\). J. Phys. A 49(16), 164,003, 30 (2016).  https://doi.org/10.1088/1751-8113/49/16/164003
  82. 82.
    van der Hoeven, J.: Fast evaluation of holonomic functions. Theoretical Computer Science 210(1), 199–216 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    van der Hoeven, J.: Fast evaluation of holonomic functions near and in regular singularities. Journal of Symbolic Computation 31(6), 717–743 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    van der Hoeven, J.: Efficient accelero-summation of holonomic functions. Journal of Symbolic Computation 42(4), 389–428 (2007).  https://doi.org/10.1016/j.jsc.2006.12.005 MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Huang, H.: New bounds for hypergeometric creative telescoping. In: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation - ISSAC ’16. ACM Press (2016).  https://doi.org/10.1145/2930889.2930893
  86. 86.
    Ince, E.L.: Ordinary differential equations. Dover Publications, New York (1956). Reprint of the 1926 editionGoogle Scholar
  87. 87.
    Jungen, R.: Sur les séries de Taylor n’ayant que des singularités algébrico-logarithmiques sur leur cercle de convergence. Commentarii Mathematici Helvetici 3, 266–306 (1931)MathSciNetCrossRefzbMATHGoogle Scholar
  88. 88.
    Katz, N.M.: Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin. Inst. Hautes Études Sci. Publ. Math. (39), 175–232 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  89. 89.
    Kauers, M., Jaroschek, M., Johansson, F.: Ore polynomials in Sage. In: Gutierrez et al. [77], pp. 105–125. 10.1007/978-3-319-15081-9\_6. Applications of algebra and number theory, Selected papers from the workshop held at the Johann Radon Institute for Computational and Applied Mathematics (RICAM), Linz, November 25–29, 2013, Lecture Notes in Computer ScienceGoogle Scholar
  90. 90.
    Kontsevich, M., Zagier, D.: Periods. In: Mathematics unlimited—2001 and beyond, pp. 771–808. Springer, Berlin (2001)Google Scholar
  91. 91.
    Koutschan, C.: Creative telescoping for holonomic functions. In: C. Schneider, J. Blümlein (eds.) Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, Texts & Monographs in Symbolic Computation, pp. 171–194. Springer, Wien (2013).  https://doi.org/10.1007/978-3-7091-1616-6_7
  92. 92.
    Lairez, P.: Computing periods of rational integrals. Mathematics of Computation 85(300), 1719–1752 (2016).  https://doi.org/10.1090/mcom/3054 MathSciNetCrossRefzbMATHGoogle Scholar
  93. 93.
    Lairez, P., Safey El Din, M.: Computing the volume of bounded semi-algebraic sets (2018). In preparationGoogle Scholar
  94. 94.
    Lewanowicz, S.: Construction of a recurrence relation of the lowest order for coefficients of the Gegenbauer series. Zastosowania Matematyki XV(3), 345–395 (1976)Google Scholar
  95. 95.
    Libri, G.: Note sur les rapports qui existent entre la théorie des équations algébriques et la théorie des équations linéaires aux différentielles et aux différences. Journal de Mathématiques Pures et Appliquées 1(1), 10–13 (1836)Google Scholar
  96. 96.
    Loday-Richaud, M.: Divergent Series, Summability and Resurgence II, Lecture Notes in Mathematics, vol. 2154. Springer (2016)Google Scholar
  97. 97.
    Mallinger, C.: Algorithmic Manipulations and Transformations of Univariate Holonomic Functions and Sequences. Master’s thesis, RISC, J. Kepler University (1996)Google Scholar
  98. 98.
    Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman & Hall/CRC (2003)Google Scholar
  99. 99.
    Maulat, S., Salvy, B.: Formulas for continued fractions: An automated guess and prove approach. In: ISSAC’15: Proceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation, pp. 275–282. ACM, New York, NY, USA (2015). 10.1145/2755996.2756660. See accompanying Maple worksheet on arXiv.Google Scholar
  100. 100.
    Maulat, S., Salvy, B.: Explicit continued fractions for solutions of Riccati-type equations (2018). In preparationGoogle Scholar
  101. 101.
    Melczer, S., Salvy, B.: Symbolic-numeric tools for analytic combinatorics in several variables. In: ISSAC’16: Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation, pp. 333–340. ACM, New York, NY, USA (2016).  https://doi.org/10.1145/2930889.2930913
  102. 102.
    Mezzarobba, M.: Numgfun: a package for numerical and analytic computation with D-finite functions. In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation (ISSAC 2010), pp. 139–145. ACM (2010).  https://doi.org/10.1145/1837934.1837965
  103. 103.
    Mezzarobba, M.: Rigorous multiple-precision evaluation of D-finite functions in Sagemath. Accepted for publication in the proceedings of ICMS 2016, but withdrawn due to a disagreement with Springer on copyright matters 1607.01967, arXiv (2016). https://arxiv.org/abs/1607.01967
  104. 104.
    Mezzarobba, M., Salvy, B.: Effective bounds for P-recursive sequences. Journal of Symbolic Computation 45(10), 1075–1096 (2010).  https://doi.org/10.1016/j.jsc.2010.06.024 MathSciNetCrossRefzbMATHGoogle Scholar
  105. 105.
    Mitschi, C., Sauzin, D.: Divergent Series, Summability and Resurgence I, Lecture Notes in Mathematics, vol. 2153. Springer (2017)Google Scholar
  106. 106.
    Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press (2010). http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521140638
  107. 107.
    Ore, O.: Linear equations in non-commutative fields. Annals of Mathematics 32, 463–477 (1931)MathSciNetCrossRefzbMATHGoogle Scholar
  108. 108.
    Ore, O.: Theory of non-commutative polynomials. Annals of Mathematics 34, 480–508 (1933)MathSciNetCrossRefzbMATHGoogle Scholar
  109. 109.
    Paszkowski, S.: Zastosowania numeryczne wielomianów i szeregów Czebyszewa. Państwowe Wydawnictwo Naukowe, Warsaw (1975). Podstawowe Algorytmy Numeryczne. [Fundamental Numerical Algorithms]Google Scholar
  110. 110.
    Pemantle, R., Wilson, M.C.: Analytic Combinatorics in Several Variables. Cambridge University Press (2013)Google Scholar
  111. 111.
    Picard, É.: Sur les périodes des intégrales doubles et sur une classe d’équations différentielles linéaires. In: Gauthier Villars (ed.) Comptes rendus hebdomadaires des séances de l’Académie des sciences, vol. 134, pp. 69–71. MM. les secrétaires perpétuels (1902)Google Scholar
  112. 112.
    Pólya, G.: Sur les séries entières, dont la somme est une fonction algébrique. L’Enseignement Mathématique 22, 38–47 (1921)zbMATHGoogle Scholar
  113. 113.
    Poole, E.G.C.: Introduction to the theory of linear differential equations. Dover Publications Inc., New York (1960)zbMATHGoogle Scholar
  114. 114.
    Van der Poorten, A.: A proof that Euler missed \(\ldots \) Apéry’s proof of the irrationality of \(\zeta (3)\). Mathematical Intelligencer 1, 195–203 (1979)CrossRefzbMATHGoogle Scholar
  115. 115.
    Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series. Volume 2: Special functions. Gordon and Breach (1986). 750 pages. First edition in Moscow, Nauka, 1983Google Scholar
  116. 116.
    van der Put, M., Singer, M.F.: Galois theory of linear differential equations. Spinger Verlag (2003)Google Scholar
  117. 117.
    Rebillard, L., Zakrajšek, H.: Recurrence relations for the coefficients in hypergeometric series expansions. In: I. Kotsireas, E. Zima (eds.) Computer Algebra 2006. Latest Advances in Symbolic Algorithms, pp. 158–180. World Scientific (2006)Google Scholar
  118. 118.
    Salvy, B., Zimmermann, P.: Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM Transactions on Mathematical Software 20(2), 163–177 (1994).  https://doi.org/10.1145/178365.178368 CrossRefzbMATHGoogle Scholar
  119. 119.
    Stanley, R.P.: Enumerative combinatorics, vol. 2. Cambridge University Press (1999)Google Scholar
  120. 120.
    Strehl, V.: Binomial identities – combinatorial and algorithmic aspects. Discrete Mathematics 136(1-3), 309–346 (1994).  https://doi.org/10.1016/0012-365X(94)00118-3 MathSciNetCrossRefzbMATHGoogle Scholar
  121. 121.
    Tannery, J.: Propriétés des intégrales des équations différentielles linéaires à coefficients variables. Thèse de doctorat ès sciences mathématiques, Faculté des Sciences de Paris (1874)Google Scholar
  122. 122.
    Tournier, É.: Solutions formelles d’équations différentielles. Doctorat d’état, Université scientifique, technologique et médicale de Grenoble (1987)Google Scholar
  123. 123.
    Trefethen, L.N.: Approximation theory and approximation practice. SIAM (2013). http://www2.maths.ox.ac.uk/chebfun/ATAP/
  124. 124.
    Tsai, H.: Weyl closure of a linear differential operator. Journal of Symbolic Computation 29(4-5), 747–775 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  125. 125.
    Van Der Hoeven, J.: Constructing reductions for creative telescoping (2017). https://hal.archives-ouvertes.fr/hal-01435877. Working paper or preprint
  126. 126.
    Wasow, W.: Asymptotic expansions for ordinary differential equations. Dover Publications Inc., New York (1987). Reprint of the John Wiley 1976 editionGoogle Scholar
  127. 127.
    Watson, G.N.: Three triple integrals. The Quarterly Journal of Mathematics os-10(1), 266–276 (1939). 10.1093/qmath/os-10.1.266Google Scholar
  128. 128.
    Wegschaider, K.: Computer generated proofs of binomial multi-sum identities. Master’s thesis, RISC, J. Kepler University (1997)Google Scholar
  129. 129.
    Wilf, H.S., Zeilberger, D.: An algorithmic proof theory for hypergeometric (ordinary and “\(q\)”) multisum/integral identities. Inventiones Mathematicae 108, 575–633 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  130. 130.
    Wilf, H.S., Zeilberger, D.: Rational function certification of multisum/integral/“\(q\)” identities. Bulletin of the American Mathematical Society 27(1), 148–153 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  131. 131.
    Wu, M., Li, Z.: On solutions of linear functional systems and factorization of Laurent-Ore modules. In: I. Kotsireas, E. Zima (eds.) Computer algebra 2006, pp. 109–136. World Sci. Publ., Hackensack, NJ (2007).  https://doi.org/10.1142/9789812778857_0007. Latest advances in symbolic algorithms
  132. 132.
    Zeilberger, D.: A holonomic systems approach to special functions identities. Journal of Computational and Applied Mathematics 32(3), 321–368 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  133. 133.
    Zeilberger, D.: The method of creative telescoping. Journal of Symbolic Computation 11, 195–204 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© SFoCM 2018

Authors and Affiliations

  1. 1.INRIA, Laboratoire LIPUniversité de Lyon, CNRS, ENS Lyon, UCBLLyonFrance

Personalised recommendations