Advertisement

Foundations of Computational Mathematics

, Volume 18, Issue 5, pp 1245–1297 | Cite as

An Approximate Nerve Theorem

  • Dejan GovcEmail author
  • Primoz Skraba
Article
  • 264 Downloads

Abstract

The nerve theorem relates the topological type of a suitably nice space with the nerve of a good cover of that space. It has many variants, such as to consider acyclic covers and numerous applications in topology including applied and computational topology. The goal of this paper is to relax the notion of a good cover to an approximately good cover, or more precisely, we introduce the notion of an \(\varepsilon \)-acyclic cover. We use persistent homology to make this rigorous and prove tight bounds between the persistent homology of a space endowed with a function and the persistent homology of the nerve of an \(\varepsilon \)-acyclic cover of the space. Our approximations are stated in terms of interleaving distance between persistence modules. Using the Mayer–Vietoris spectral sequence, we prove upper bounds on the interleaving distance between the persistence module of the underlying space and the persistence module of the nerve of the cover. To prove the best possible bound, we must introduce special cases of interleavings between persistence modules called left and right interleavings. Finally, we provide examples which achieve the bound proving the lower bound and tightness of the result.

Keywords

Persistence modules Mayer–Vietoris Spectral sequences Approximation 

Mathematics Subject Classification

Primary 55 55T 18 

Notes

Acknowledgements

The authors would like to thank Don Sheehy for introducing them to the problem and to Petar Pavešić for suggesting the proof of Proposition 4.7. The first author was supported by the Slovenian Research Agency Grant P1-0292-0101. The second author was supported by the Slovenian Research Agency Grant TopRep N1-0058.

References

  1. 1.
    Pankaj K Agarwal, Herbert Edelsbrunner, John Harer, and Yusu Wang. Extreme elevation on a 2-manifold. Discrete and Computational Geometry, 36(4):553–572, 2006.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Paul Alexandroff. Über den allgemeinen dimensionsbegriff und seine beziehungen zur elementaren geometrischen anschauung. Mathematische Annalen, 98(1):617–635, 1928.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ulrich Bauer and Michael Lesnick. Induced matchings of barcodes and the algebraic stability of persistence. In Proceedings 30th Annual Symposium on Computational Geometry, page 355. ACM, 2014.Google Scholar
  4. 4.
    Omer Bobrowski and Sayan Mukherjee. The topology of probability distributions on manifolds. Probability Theory and Related Fields, 161(3-4):651–686, 2015.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Magnus Bakke Botnan and Gard Spreemann. Approximating persistent homology in euclidean space through collapses. arXiv preprint arXiv:1403.0533 2014.
  6. 6.
    Raoul Bott and Loring W Tu. Differential forms in algebraic topology, volume 82. Springer, 2013.Google Scholar
  7. 7.
    Kenneth S Brown. Cohomology of groups, volume 87. Springer, 2012.Google Scholar
  8. 8.
    Peter Bubenik and Jonathan A Scott. Categorification of persistent homology. Discrete and Computational Geometry, 51(3):600–627, 2014.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46:255–308, 2009.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Nicholas J Cavanna and Donald R Sheehy. Persistent nerves revisited.Google Scholar
  11. 11.
    Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J. Guibas, and Steve Y. Oudot. Proximity of persistence modules and their diagrams. Proceedings 25th Annual Symposium on Computational Geometry, pages 237–246, 2009.Google Scholar
  12. 12.
    Frédéric Chazal, David Cohen-Steiner, and André Lieutier. A sampling theory for compact sets in euclidean space. Discrete& Computational Geometry, 41(3):461–479, 2009.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Frédéric Chazal, William Crawley-Boevey, and Vin De Silva. The observable structure of persistence modules. Homology, Homotopy and Applications, 18(2):247–265, 2016.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Frédéric Chazal, Vin De Silva, Marc Glisse, and Steve Oudot. The structure and stability of persistence modules. Springer, 2016.Google Scholar
  15. 15.
    Frédéric Chazal, Leonidas J Guibas, Steve Y Oudot, and Primoz Skraba. Analysis of scalar fields over point cloud data. In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1021–1030. Society for Industrial and Applied Mathematics, 2009.Google Scholar
  16. 16.
    Frédéric Chazal, Leonidas J Guibas, Steve Y Oudot, and Primoz Skraba. Scalar field analysis over point cloud data. Discrete and Computational Geometry, 46(4):743–775, 2011.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Frédéric Chazal and Steve Yann Oudot. Towards persistence-based reconstruction in euclidean spaces. In Proceedings 24th Annual Symposium on Computational Geometry, pages 232–241. ACM, 2008.Google Scholar
  18. 18.
    David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams. Discrete and Computational Geometry, 37:103–120, 2007.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tamal K Dey, Fengtao Fan, and Yusu Wang. Graph induced complex on point data. Computational Geometry, 48(8):575–588, 2015.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Herbert Edelsbrunner and John Harer. Computational Topology. American Mathematical Society, 2010.Google Scholar
  21. 21.
    David Eisenbud. Commutative Algebra: with a view toward algebraic geometry, volume 150. Springer, 2013.Google Scholar
  22. 22.
    Robert Ghrist. Barcodes: the persistent topology of data. Bulletin of the American Mathematical Society, 45(1):61–75, 2008.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Roger Godement. Topologie algébrique et théorie des faisceaux, volume 13. Hermann Paris, 1958.Google Scholar
  24. 24.
    Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.zbMATHGoogle Scholar
  25. 25.
    Michael Lesnick. The theory of the interleaving distance on multidimensional persistence modules. Foundations of Computational Mathematics, 15(3):613–650, 2015.MathSciNetCrossRefGoogle Scholar
  26. 26.
    David Lipsky, Primoz Skraba, and Mikael Vejdemo-Johansson. A spectral sequence for parallelized persistence. arXiv preprint arXiv:1112.1245, 2011.
  27. 27.
    John McCleary. A user’s guide to spectral sequences. Number 58. Cambridge University Press, 2001.Google Scholar
  28. 28.
    Constantin Nastasescu and Freddy Van Oystaeyen. Graded and filtered rings and modules, volume 758. Springer, 1979.Google Scholar
  29. 29.
    Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds with high confidence from random samples. Discrete& Computational Geometry, 39(1-3):419–441, 2008.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Amit Patel. Semicontinuity of persistence diagrams. arXiv preprint arXiv:1601.03107, 2016.
  31. 31.
    Joseph Rotman. An introduction to homological algebra. Springer, 2008.Google Scholar
  32. 32.
    Martina Scolamiero, Wojciech Chachólski, Anders Lundman, Ryan Ramanujam, and Sebastian Öberg. Multidimensional persistence and noise. Foundations of Computational Mathematics, pages 1–40, 2016.Google Scholar
  33. 33.
    Donald Sheehy. A multicover nerve for geometric inference. In Proceedings of the Canadian Conference of Computational Geometry, pages 309–314, 2012.Google Scholar
  34. 34.
    Donald R Sheehy. Linear-size approximations to the vietoris–rips filtration. Discrete and Computational Geometry, 49(4):778–796, 2013.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Mikael Vejdemo-Johansson. Interleaved equivalence of categories of persistence modules. arXiv preprint arXiv:1210.7913, 2012.
  36. 36.
    Shmuel Weinberger. What is... persistent homology? Notices of the AMS, 58(1):36–39, 2011.Google Scholar
  37. 37.
    Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete and Computational Geometry, 33(2):249–274, 2005.MathSciNetCrossRefGoogle Scholar

Copyright information

© SFoCM 2017

Authors and Affiliations

  1. 1.Institute of Mathematics, Physics and MechanicsLjubljanaSlovenia
  2. 2.Jozef Stefan InstituteLjubljanaSlovenia
  3. 3.FAMNITUniversity of PrimorskaKoperSlovenia

Personalised recommendations