Advertisement

Foundations of Computational Mathematics

, Volume 18, Issue 5, pp 1233–1243 | Cite as

Almost Every Real Quadratic Polynomial has a Poly-time Computable Julia Set

  • Artem Dudko
  • Michael YampolskyEmail author
Article
  • 122 Downloads

Abstract

We prove that Collet–Eckmann rational maps have poly-time computable Julia sets. As a consequence, almost all real quadratic Julia sets are poly-time.

Keywords

Julia set Computational complexity Collet–Eckmann condition 

Mathematics Subject Classification

68Q17 37F50 

References

  1. 1.
    M. Aspenberg, The Collet-Eckmann condition for rational functions on the Riemann sphere, Math. Z., 273 (2013), 935–980.MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Avila and C. G. Moreira, Statistical properties of unimodal maps: The quadratic family, Ann. of Math. (2), 161 (2005), 831–881.MathSciNetCrossRefGoogle Scholar
  3. 3.
    I. Binder, M. Braverman and M. Yampolsky, On computational complexity of Siegel Julia sets, Commun. Math. Phys., 264 (2006), 317–334.MathSciNetCrossRefGoogle Scholar
  4. 4.
    I. Binder, M. Braverman and M. Yampolsky, Filled Julia sets with empty interior are computable, Found. Comput. Math., 7 (2007), 405–416.MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Braverman and M. Yampolsky, Constructing locally connected non-computable Julia sets, Commun. Math. Phys., 291 (2009), 513–532.MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Braverman, Computational Complexity of Euclidean Sets: Hyperbolic Julia Sets are Poly-Time Computable, Master’s thesis, University of Toronto, 2004.Google Scholar
  7. 7.
    M. Braverman, Parabolic Julia sets are polynomial time computable, Nonlinearity, 19 (2006), 1383–1401.MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Braverman and M. Yampolsky, Non-computable Julia sets, J. Amer. Math. Soc., 19 (2006), 551–578.MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Braverman and M. Yampolsky, Computability of Julia Sets, Algorithms and Computation in Mathematics, 23, Springer-Verlag, Berlin, 2009.zbMATHGoogle Scholar
  10. 10.
    J. B. Conway, Functions of One Complex Variable. II, Graduate Texts in Mathematics, 159, Springer-Verlag, New York, 1995.zbMATHGoogle Scholar
  11. 11.
    M. Denker, F. Przytycki and F. Urbański, On the transfer operator for rational functions on the Riemann sphere, Erg. Th. and Dynam Sys. 16 (1996), 255–266.MathSciNetzbMATHGoogle Scholar
  12. 12.
    A. Dudko, Computability of the Julia set. Nonrecurrent critical orbits, Discrete and Continuous Dynamical Systems, Volume 34, 7 (2014), 2751–2778.MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Dudko, M. Yampolsky, Poly-time computability of Feigenbaum Julia set, Erg. Th. and Dynam. Sys., 36 (2016), 2441–2462MathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Milnor, Self-similarity and hairiness in the Mandelbrot set, “Computers in Geometry and Topology”, Lect. Notes Pure Appl. Math., ed. Tangora, M, 114 (1989), 211–257.Google Scholar
  15. 15.
    Przytycki, F., Lyapunov Characteristic Exponents are Nonnegative, Proc. Amer. Math. Soc., 119 (1993), No. 1, pp. 309–317MathSciNetCrossRefGoogle Scholar
  16. 16.
    F. Przytycki and S. Rohde, Porosity of Collet-Eckmann Julia sets, Fund. Math. 155 (1998), no. 2, 189–199.MathSciNetzbMATHGoogle Scholar
  17. 17.
    F. Przytycki, J. Rivera-Letelier, S. Smirnov, Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps, Invent. Math. 151 (2003), 29–63.MathSciNetCrossRefGoogle Scholar
  18. 18.
    R. Rettinger, A Fast Algorithm for Julia Sets of Hyperbolic Rational Functions., Electr. Notes Theor. Comput. Sci., 120 (2005), 145–157.Google Scholar
  19. 19.
    A. M. Turing, On Computable Numbers, With an Application to the Entscheidungsproblem, Proc. London Math. Soc., 42 (1936), no. 1, 230–265.MathSciNetCrossRefGoogle Scholar
  20. 20.
    H. Weyl, Randbemerkungen zu Hauptproblemen der Mathematik, Math. Z., 20 (1924), 131–150.MathSciNetCrossRefGoogle Scholar

Copyright information

© SFoCM 2017

Authors and Affiliations

  1. 1.IM PANWarsawPoland
  2. 2.University of TorontoTorontoCanada

Personalised recommendations