Foundations of Computational Mathematics

, Volume 16, Issue 6, pp 1423–1472 | Cite as

Tensor Networks and Hierarchical Tensors for the Solution of High-Dimensional Partial Differential Equations

  • Markus Bachmayr
  • Reinhold Schneider
  • André Uschmajew


Hierarchical tensors can be regarded as a generalisation, preserving many crucial features, of the singular value decomposition to higher-order tensors. For a given tensor product space, a recursive decomposition of the set of coordinates into a dimension tree gives a hierarchy of nested subspaces and corresponding nested bases. The dimensions of these subspaces yield a notion of multilinear rank. This rank tuple, as well as quasi-optimal low-rank approximations by rank truncation, can be obtained by a hierarchical singular value decomposition. For fixed multilinear ranks, the storage and operation complexity of these hierarchical representations scale only linearly in the order of the tensor. As in the matrix case, the set of hierarchical tensors of a given multilinear rank is not a convex set, but forms an open smooth manifold. A number of techniques for the computation of hierarchical low-rank approximations have been developed, including local optimisation techniques on Riemannian manifolds as well as truncated iteration methods, which can be applied for solving high-dimensional partial differential equations. This article gives a survey of these developments. We also discuss applications to problems in uncertainty quantification, to the solution of the electronic Schrödinger equation in the strongly correlated regime, and to the computation of metastable states in molecular dynamics.


Hierarchical tensors Low-rank approximation High-dimensional partial differential equations 

Mathematics Subject Classification

65-02 65F99 65J 49M 35C 


  1. 1.
    Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton, NJ (2008)MATHCrossRefGoogle Scholar
  2. 2.
    Andreev, R., Tobler, C.: Multilevel preconditioning and low-rank tensor iteration for space-time simultaneous discretizations of parabolic PDEs. Numer. Linear Algebra Appl. 22(2), 317–337 (2015)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Arad, I., Kitaev, A., Landau, Z., Vazirani, U.: An area law and sub-exponential algorithm for 1D systems. arXiv:1301.1162 (2013)
  4. 4.
    Arnold, A., Jahnke, T.: On the approximation of high-dimensional differential equations in the hierarchical Tucker format. BIT 54(2), 305–341 (2014)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bachmayr, M., Cohen, A.: Kolmogorov widths and low-rank approximations of parametric elliptic PDEs. Math. Comp. (2016). In press.Google Scholar
  6. 6.
    Bachmayr, M., Dahmen, W.: Adaptive low-rank methods for problems on Sobolev spaces with error control in L\(_2\). ESAIM: M2AN (2015). doi:10.1051/m2an/2015071. In press.
  7. 7.
    Bachmayr, M., Dahmen, W.: Adaptive near-optimal rank tensor approximation for high-dimensional operator equations. Found. Comput. Math. 15(4), 839–898 (2015)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bachmayr, M., Dahmen, W.: Adaptive low-rank methods: Problems on Sobolev spaces. SIAM J. Numer. Anal. 54, 744–796 (2016)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bachmayr, M., Schneider, R.: Iterative methods based on soft thresholding of hierarchical tensors. Found. Comput. Math. (2016). In press.Google Scholar
  10. 10.
    Ballani, J., Grasedyck, L.: A projection method to solve linear systems in tensor format. Numer. Linear Algebra Appl. 20(1), 27–43 (2013)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ballani, J., Grasedyck, L.: Tree adaptive approximation in the hierarchical tensor format. SIAM J. Sci. Comput. 36(4), A1415–A1431 (2014)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Ballani, J., Grasedyck, L., Kluge, M.: Black box approximation of tensors in hierarchical Tucker format. Linear Algebra Appl. 438(2), 639–657 (2013)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Bazarkhanov, D., Temlyakov, V.: Nonlinear tensor product approximation of functions. J. Complexity 31(6), 867–884 (2015)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Beck, J., Tempone, R., Nobile, F., Tamellini, L.: On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods. Math. Models Methods Appl. Sci. 22(9), 1250023, 33 (2012)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Beck, M. H., Jäckle, A., Worth, G. A., Meyer, H.-D.: The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 324(1), 1 – 105 (2000)CrossRefGoogle Scholar
  16. 16.
    Beylkin, G., Mohlenkamp, M. J.: Numerical operator calculus in higher dimensions. Proc. Natl. Acad. Sci. USA 99(16), 10246–10251 (electronic) (2002)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Beylkin, G., Mohlenkamp, M. J.: Algorithms for numerical analysis in high dimensions. SIAM J. Sci. Comput. 26(6), 2133–2159 (electronic) (2005)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Billaud-Friess, M., Nouy, A., Zahm, O.: A tensor approximation method based on ideal minimal residual formulations for the solution of high-dimensional problems. ESAIM Math. Model. Numer. Anal. 48(6), 1777–1806 (2014)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Blumensath, T., Davies, M. E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Braess, D., Hackbusch, W.: On the efficient computation of high-dimensional integrals and the approximation by exponential sums. In: R. DeVore, A. Kunoth (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 39–74. Springer Berlin Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Buczyńska, W., Buczyński, J., Michałek, M.: The Hackbusch conjecture on tensor formats. J. Math. Pures Appl. (9) 104(4), 749–761 (2015)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Cai, J.-F., Candès, E. J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Cancès, E., Defranceschi, M., Kutzelnigg, W., Le Bris, C., Maday, Y.: Handbook of Numerical Analysis, vol. X, chap. Computational Chemistry: A Primer. North-Holland (2003)MATHGoogle Scholar
  24. 24.
    Cancès, E., Ehrlacher, V., Lelièvre, T.: Convergence of a greedy algorithm for high-dimensional convex nonlinear problems. Math. Models Methods Appl. Sci. 21(12), 2433–2467 (2011)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Carroll, J. D., Chang, J.-J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3), 283–319 (1970)MATHCrossRefGoogle Scholar
  26. 26.
    Chan, G. K.-L., Sharma, S.: The density matrix renormalization group in quantum chemistry. Annu. Rev. Phys. Chem. 62, 465–481 (2011)CrossRefGoogle Scholar
  27. 27.
    Cichocki, A.: Era of big data processing: a new approach via tensor networks and tensor decompositions. arXiv:1403.2048 (2014)
  28. 28.
    Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., Phan, H. A.: Tensor decompositions for signal processing applications: From two-way to multiway component analysis. IEEE Signal Proc. Mag. 32(2), 145–163 (2015)CrossRefGoogle Scholar
  29. 29.
    Cohen, A., DeVore, R., Schwab, C.: Convergence rates of best \(N\)-term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10(6), 615–646 (2010)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Cohen, A., Devore, R., Schwab, C.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s. Anal. Appl. (Singap.) 9(1), 11–47 (2011)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Cohen, N., Sharir, O., Shashua, A.: On the expressive power of Deep Learning: A tensor analysis. arXiv:1509.05009 (2015)
  32. 32.
    Coifman, R. R., Kevrekidis, I. G., Lafon, S., Maggioni, M., Nadler, B.: Diffusion maps, reduction coordinates, and low dimensional representation of stochastic systems. Multiscale Model. Simul. 7(2), 842–864 (2008)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Combettes, P. L., Wajs, V. R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (electronic) (2005)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Comon, P., Luciani, X., de Almeida, A. L. F.: Tensor decompositions, alternating least squares and other tales. J. Chemometrics 23(7-8), 393–405 (2009)CrossRefGoogle Scholar
  35. 35.
    Da Silva, C., Herrmann, F. J.: Optimization on the hierarchical Tucker manifold—applications to tensor completion. Linear Algebra Appl. 481, 131–173 (2015)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Dahmen, W., DeVore, R., Grasedyck, L., Süli, E.: Tensor-sparsity of solutions to high-dimensional elliptic partial differential equations. Found. Comput. Math. (2015). In press.Google Scholar
  37. 37.
    Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57(11), 1413–1457 (2004)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    De Lathauwer, L., Comon, P., De Moor, B., Vandewalle, J.: High-order power method – Application in Independent Component Analysis. In: Proceedings of the 1995 International Symposium on Nonlinear Theory and its Applications (NOLTA’95), pp. 91–96 (1995)Google Scholar
  39. 39.
    De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (electronic) (2000)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    DeVore, R. A.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Dolgov, S., Khoromskij, B.: Tensor-product approach to global time-space parametric discretization of chemical master equation. Preprint 68/2012, MPI MIS Leipzig (2012)Google Scholar
  42. 42.
    Dolgov, S. V., Khoromskij, B. N., Oseledets, I. V.: Fast solution of parabolic problems in the tensor train/quantized tensor train format with initial application to the Fokker-Planck equation. SIAM J. Sci. Comput. 34(6), A3016–A3038 (2012)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Dolgov, S. V., Khoromskij, B. N., Oseledets, I. V., Savostyanov, D. V.: Computation of extreme eigenvalues in higher dimensions using block tensor train format. Comput. Phys. Commun. 185(4), 1207–1216 (2014)MATHCrossRefGoogle Scholar
  44. 44.
    Dolgov, S. V., Savostyanov, D. V.: Alternating minimal energy methods for linear systems in higher dimensions. SIAM J. Sci. Comput. 36(5), A2248–A2271 (2014)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1(3), 211–218 (1936)MATHCrossRefGoogle Scholar
  46. 46.
    Edelman, A., Arias, T. A., Smith, S. T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1999)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Eigel, M., Gittelson, C. J., Schwab, C., Zander, E.: Adaptive stochastic Galerkin FEM. Comput. Methods Appl. Mech. Engrg. 270, 247–269 (2014)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Eigel, M., Pfeffer, M., Schneider, R.: Adaptive stochastic Galerkin FEM with hierarchical tensor representions. Preprint 2153, WIAS Berlin (2015)Google Scholar
  49. 49.
    Espig, M., Hackbusch, W., Handschuh, S., Schneider, R.: Optimization problems in contracted tensor networks. Comput. Vis. Sci. 14(6), 271–285 (2011)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Espig, M., Hackbusch, W., Khachatryan, A.: On the convergence of alternating least squares optimisation in tensor format representations. arXiv:1506.00062 (2015)
  51. 51.
    Espig, M., Hackbusch, W., Rohwedder, T., Schneider, R.: Variational calculus with sums of elementary tensors of fixed rank. Numer. Math. 122(3), 469–488 (2012)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Falcó, A., Hackbusch, W.: On minimal subspaces in tensor representations. Found. Comput. Math. 12(6), 765–803 (2012)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Falcó, A., Nouy, A.: Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces. Numer. Math. 121(3), 503–530 (2012)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Falcó, A., Hackbusch W., Nouy, A.: Geometric structures in tensor representations. Preprint 9/2013, MPI MIS Leipzig (2013)Google Scholar
  55. 55.
    Fannes, M., Nachtergaele, B., Werner, R. F.: Finitely correlated states on quantum spin chains. Comm. Math. Phys. 144(3), 443–490 (1992)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Birkhäuser/Springer, New York (2013)MATHCrossRefGoogle Scholar
  57. 57.
    Ghanem, R., Spanos, P. D.: Polynomial chaos in stochastic finite elements. J. Appl. Mech. 57(1), 197–202 (1990)MATHCrossRefGoogle Scholar
  58. 58.
    Ghanem, R. G., Spanos, P. D.: Stochastic Finite Elements: A Spectral Approach, second edn. Dover (2007)MATHGoogle Scholar
  59. 59.
    Grasedyck, L.: Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure. Computing 72(3-4), 247–265 (2004)MathSciNetMATHGoogle Scholar
  60. 60.
    Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31(4), 2029–2054 (2009/10)Google Scholar
  61. 61.
    Grasedyck, L.: Polynomial approximation in hierarchical Tucker format by vector-tensorization. DFG SPP 1324 Preprint 43 (2010)Google Scholar
  62. 62.
    Grasedyck, L., Hackbusch, W.: An introduction to hierarchical(\({\cal H}\)-) rank and TT-rank of tensors with examples.Comput. Methods Appl. Math. 11(3), 291–304 (2011) Math.11(3), 291-304 (2011)MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM-Mitt. 36(1), 53–78 (2013)MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Hackbusch, W.: Tensorisation of vectors and their efficient convolution. Numer. Math. 119(3), 465–488 (2011)MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer, Heidelberg (2012)MATHCrossRefGoogle Scholar
  66. 66.
    Hackbusch, W.: \(L^\infty \) estimation of tensor truncations. Numer. Math. 125(3), 419–440 (2013)MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Hackbusch, W.: Numerical tensor calculus. Acta Numer. 23, 651–742 (2014)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Hackbusch, W., Khoromskij, B. N., Tyrtyshnikov, E. E.: Approximate iterations for structured matrices. Numer. Math. 109(3), 365–383 (2008)MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5), 706–722 (2009)MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Hackbusch, W., Schneider, R.: Extraction of Quantifiable Information from Complex Systems, chap. Tensor spaces and hierarchical tensor representations, pp. 237–261. Springer (2014)Google Scholar
  71. 71.
    Haegeman, J., Osborne, T. J., Verstraete, F.: Post-matrix product state methods: To tangent space and beyond. Phys. Rev. B 88, 075133 (2013)CrossRefGoogle Scholar
  72. 72.
    Harshman, R. A.: Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multi-modal factor analysis. UCLA Working Papers in Phonetics 16, 1–84 (1970)Google Scholar
  73. 73.
    Helgaker, T., Jørgensen, P., Olsen, J.: Molecular Electronic-Structure Theory. John Wiley & Sons, Chichester (2000)CrossRefGoogle Scholar
  74. 74.
    Helmke, U., Shayman, M. A.: Critical points of matrix least squares distance functions. Linear Algebra Appl. 215, 1–19 (1995)MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Hillar, C. J., Lim, L.-H.: Most tensor problems are NP-hard. J. ACM 60(6), Art. 45, 39 (2013)Google Scholar
  76. 76.
    Hitchcock, F. L.: The expression of a tensor or a polyadic as a sum of products. Journal of Mathematics and Physics 6, 164–189 (1927)MATHCrossRefGoogle Scholar
  77. 77.
    Hitchcock, F. L.: Multiple invariants and generalized rank of a \(p\)-way matrix or tensor. Journal of Mathematics and Physics 7, 39–79 (1927)MATHCrossRefGoogle Scholar
  78. 78.
    Holtz, S., Rohwedder, T., Schneider, R.: The alternating linear scheme for tensor optimization in the tensor train format. SIAM J. Sci. Comput. 34(2), A683–A713 (2012)MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    Holtz, S., Rohwedder, T., Schneider, R.: On manifolds of tensors of fixed TT-rank. Numer. Math. 120(4), 701–731 (2012)MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    Kazeev, V., Schwab, C.: Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions. SAM research report 2015-24, ETH Zürich (2015)Google Scholar
  81. 81.
    Kazeev, V. A.: Quantized tensor structured finite elements for second-order elliptic PDEs in two dimensions. Ph.D. thesis, ETH Zürich (2015)Google Scholar
  82. 82.
    Khoromskij, B. N.: \(O(d\log N)\)-quantics approximation of \(N\)-\(d\) tensors in high-dimensional numerical modeling. Constr. Approx. 34(2), 257–280 (2011)Google Scholar
  83. 83.
    Khoromskij, B. N., Miao, S.: Superfast wavelet transform using quantics-TT approximation. I. Application to Haar wavelets. Comput. Methods Appl. Math. 14(4), 537–553 (2014)MathSciNetMATHGoogle Scholar
  84. 84.
    Khoromskij, B. N., Oseledets, I. V.: DMRG+QTT approach to computation of the ground state for the molecular Schrödinger operator. Preprint 69/2010, MPI MIS Leipzig (2010)Google Scholar
  85. 85.
    Khoromskij, B. N., Schwab, C.: Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs. SIAM J. Sci. Comput. 33(1), 364–385 (2011)MathSciNetMATHCrossRefGoogle Scholar
  86. 86.
    Koch, O., Lubich, C.: Dynamical tensor approximation. SIAM J. Matrix Anal. Appl. 31(5), 2360–2375 (2010)MathSciNetMATHCrossRefGoogle Scholar
  87. 87.
    Kolda, T. G., Bader, B. W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)MathSciNetMATHCrossRefGoogle Scholar
  88. 88.
    Kressner, D., Steinlechner, M., Uschmajew, A.: Low-rank tensor methods with subspace correction for symmetric eigenvalue problems. SIAM J. Sci. Comput. 36(5), A2346–A2368 (2014)MathSciNetMATHCrossRefGoogle Scholar
  89. 89.
    Kressner, D., Steinlechner, M., Vandereycken, B.: Low-rank tensor completion by Riemannian optimization. BIT 54(2), 447–468 (2014)MathSciNetMATHCrossRefGoogle Scholar
  90. 90.
    Kressner, D., Tobler, C.: Low-rank tensor Krylov subspace methods for parametrized linear systems. SIAM J. Matrix Anal. Appl. 32(4), 1288–1316 (2011)MathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    Kressner, D., Tobler, C.: Preconditioned low-rank methods for high-dimensional elliptic PDE eigenvalue problems. Comput. Methods Appl. Math. 11(3), 363–381 (2011)MathSciNetMATHCrossRefGoogle Scholar
  92. 92.
    Kressner, D., Uschmajew, A.: On low-rank approximability of solutions to high-dimensional operator equations and eigenvalue problems. Linear Algebra Appl. 493, 556–572 (2016)MathSciNetMATHCrossRefGoogle Scholar
  93. 93.
    Kroonenberg, P. M.: Applied Multiway Data Analysis. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ (2008)MATHCrossRefGoogle Scholar
  94. 94.
    Kruskal, J. B.: Rank, decomposition, and uniqueness for \(3\)-way arrays. In: R. Coppi, S. Bolasco (eds.) Multiway data analysis, pp. 7–18. North-Holland, Amsterdam (1989)Google Scholar
  95. 95.
    Landsberg, J. M.: Tensors: Geometry and Applications. American Mathematical Society, Providence, RI (2012)MATHGoogle Scholar
  96. 96.
    Landsberg, J. M., Qi, Y., Ye, K.: On the geometry of tensor network states. Quantum Inf. Comput. 12(3-4), 346–354 (2012)MathSciNetMATHGoogle Scholar
  97. 97.
    Lang, S.: Fundamentals of Differential Geometry. Springer-Verlag, New York (1999)MATHCrossRefGoogle Scholar
  98. 98.
    Le Maître, O. P., Knio, O. M.: Spectral Methods for Uncertainty Quantification. Springer, New York (2010)MATHCrossRefGoogle Scholar
  99. 99.
    Legeza, Ö., Rohwedder, T., Schneider, R., Szalay, S.: Many-Electron Approaches in Physics, Chemistry and Mathematics, chap. Tensor product approximation (DMRG) and coupled cluster method in quantum chemistry, pp. 53–76. Springer (2014)Google Scholar
  100. 100.
    Lim, L.-H.: Tensors and hypermatrices. In: L. Hogben (ed.) Handbook of Linear Algebra, second edn. CRC Press, Boca Raton, FL (2014)Google Scholar
  101. 101.
    Lim, L.-H., Comon, P.: Nonnegative approximations of nonnegative tensors. J. Chemometrics 23(7-8), 432–441 (2009)CrossRefGoogle Scholar
  102. 102.
    Lubich, C.: From quantum to classical molecular dynamics: reduced models and numerical analysis. European Mathematical Society (EMS), Zürich (2008)MATHCrossRefGoogle Scholar
  103. 103.
    Lubich, C., Oseledets, I. V.: A projector-splitting integrator for dynamical low-rank approximation. BIT 54(1), 171–188 (2014)MathSciNetMATHCrossRefGoogle Scholar
  104. 104.
    Lubich, C., Oseledets, I. V., Vandereycken, B.: Time integration of tensor trains. SIAM J. Numer. Anal. 53(2), 917–941 (2015)MathSciNetMATHCrossRefGoogle Scholar
  105. 105.
    Lubich, C., Rohwedder, T., Schneider, R., Vandereycken, B.: Dynamical approximation by hierarchical Tucker and tensor-train tensors. SIAM J. Matrix Anal. Appl. 34(2), 470–494 (2013)MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    Mohlenkamp, M. J.: Musings on multilinear fitting. Linear Algebra Appl. 438(2), 834–852 (2013)MathSciNetMATHCrossRefGoogle Scholar
  107. 107.
    Murg, V., Verstraete, F., Schneider, R., Nagy, P. R., Legeza, Ö.: Tree tensor network state study of the ionic-neutral curve crossing of LiF. arXiv:1403.0981 (2014)
  108. 108.
    Nüske, F., Schneider, R., Vitalini, F., Noé, F.: Variational tensor approach for approximating the rare-event kinetics of macromolecular systems. J. Chem. Phys. 144, 054105 (2016)CrossRefGoogle Scholar
  109. 109.
    Oseledets, I., Tyrtyshnikov, E.: TT-cross approximation for multidimensional arrays. Linear Algebra Appl. 432(1), 70–88 (2010)MathSciNetMATHCrossRefGoogle Scholar
  110. 110.
    Oseledets, I. V.: On a new tensor decomposition. Dokl. Akad. Nauk 427(2), 168–169 (2009). In Russian; English translation in: Dokl. Math. 80(1), 495–496 (2009)Google Scholar
  111. 111.
    Oseledets, I. V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)MathSciNetMATHCrossRefGoogle Scholar
  112. 112.
    Oseledets, I. V., Dolgov, S. V.: Solution of linear systems and matrix inversion in the TT-format. SIAM J. Sci. Comput. 34(5), A2718–A2739 (2012)MathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    Oseledets, I. V., Tyrtyshnikov, E. E.: Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J. Sci. Comput. 31(5), 3744–3759 (2009)MathSciNetMATHCrossRefGoogle Scholar
  114. 114.
    Oseledets, I. V., Tyrtyshnikov, E. E.: Recursive decomposition of multidimensional tensors. Dokl. Akad. Nauk 427(1), 14–16 (2009). In Russian; English translation in: Dokl. Math. 80(1), 460–462 (2009)Google Scholar
  115. 115.
    Oseledets, I. V., Tyrtyshnikov, E. E.: Algebraic wavelet transform via quantics tensor train decomposition. SIAM J. Sci. Comput. 33(3), 1315–1328 (2011)MathSciNetMATHCrossRefGoogle Scholar
  116. 116.
    Pavliotis, G. A.: Stochastic Processes and Applications. Diffusion processes, the Fokker-Planck and Langevin equations. Springer, New York (2014)MATHGoogle Scholar
  117. 117.
    Rauhut, H., Schneider, R., Stojanac, Z.: Low-rank tensor recovery via iterative hard thresholding. In: 10th international conference on Sampling Theory and Applications (SampTA 2013), pp. 21–24 (2013)Google Scholar
  118. 118.
    Rohwedder, T., Uschmajew, A.: On local convergence of alternating schemes for optimization of convex problems in the tensor train format. SIAM J. Numer. Anal. 51(2), 1134–1162 (2013)MathSciNetMATHCrossRefGoogle Scholar
  119. 119.
    Rozza, G.: Separated Representations and PGD-based Model Reduction, chap. Fundamentals of reduced basis method for problems governed by parametrized PDEs and applications, pp. 153–227. Springer, Vienna (2014)MATHGoogle Scholar
  120. 120.
    Sarich, M., Noé, F., Schütte, C.: On the approximation quality of Markov state models. Multiscale Model. Simul. 8(4), 1154–1177 (2010)MathSciNetMATHCrossRefGoogle Scholar
  121. 121.
    Schmidt, E.: Zur Theorie der linearen und nichtlinearen Integralgleichungen. Math. Ann. 63(4), 433–476 (1907)MathSciNetCrossRefGoogle Scholar
  122. 122.
    Schneider, R., Uschmajew, A.: Approximation rates for the hierarchical tensor format in periodic Sobolev spaces. J. Complexity 30(2), 56–71 (2014)MathSciNetMATHCrossRefGoogle Scholar
  123. 123.
    Schneider, R., Uschmajew, A.: Convergence results for projected line-search methods on varieties of low-rank matrices via Łojasiewicz inequality. SIAM J. Optim. 25(1), 622–646 (2015)MathSciNetCrossRefGoogle Scholar
  124. 124.
    Schollwöck, U.: The density-matrix renormalization group in the age of matrix product states. Ann. Physics 326(1), 96–192 (2011)MathSciNetMATHCrossRefGoogle Scholar
  125. 125.
    Schwab, C., Gittelson, C. J.: Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numer. 20, 291–467 (2011)MathSciNetMATHCrossRefGoogle Scholar
  126. 126.
    Shub, M.: Some remarks on dynamical systems and numerical analysis. In: Dynamical Systems and Partial Differential Equations (Caracas, 1984), pp. 69–91. Univ. Simon Bolivar, Caracas (1986)Google Scholar
  127. 127.
    de Silva, V., Lim, L.-H.: Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 30(3), 1084–1127 (2008)MathSciNetMATHCrossRefGoogle Scholar
  128. 128.
    Stewart, G. W.: On the early history of the singular value decomposition. SIAM Rev. 35(4), 551–566 (1993)MathSciNetMATHCrossRefGoogle Scholar
  129. 129.
    Szabo, A., Ostlund, N. S.: Modern Quantum Chemistry. Dover, New York (1996)Google Scholar
  130. 130.
    Szalay, S., Pfeffer, M., Murg, V., Barcza, G., Verstraete, F., Schneider, R., Legeza, Ö.: Tensor product methods and entanglement optimization for ab initio quantum tensor product methods and entanglement optimization for ab initio quantum chemistry. arXiv:1412.5829 (2014)
  131. 131.
    Tanner, J., Wei, K.: Normalized iterative hard thresholding for matrix completion. SIAM J. Sci. Comput. 35(5), S104–S125 (2013)MathSciNetMATHCrossRefGoogle Scholar
  132. 132.
    Tobler, C.: Low-rank tensor methods for linear systems and eigenvalue problems. Ph.D. thesis, ETH Zürich (2012)Google Scholar
  133. 133.
    Tucker, L. R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)MathSciNetCrossRefGoogle Scholar
  134. 134.
    Uschmajew, A.: Well-posedness of convex maximization problems on Stiefel manifolds and orthogonal tensor product approximations. Numer. Math. 115(2), 309–331 (2010)MathSciNetMATHCrossRefGoogle Scholar
  135. 135.
    Uschmajew, A.: Local convergence of the alternating least squares algorithm for canonical tensor approximation. SIAM J. Matrix Anal. Appl. 33(2), 639–652 (2012)MathSciNetMATHCrossRefGoogle Scholar
  136. 136.
    Uschmajew, A.: Zur Theorie der Niedrigrangapproximation in Tensorprodukten von Hilberträumen. Ph.D. thesis, Technische Universität Berlin (2013). In GermanGoogle Scholar
  137. 137.
    Uschmajew, A.: A new convergence proof for the higher-order power method and generalizations. Pac. J. Optim. 11(2), 309–321 (2015)MathSciNetMATHGoogle Scholar
  138. 138.
    Uschmajew, A., Vandereycken, B.: The geometry of algorithms using hierarchical tensors. Linear Algebra Appl. 439(1), 133–166 (2013)MathSciNetMATHCrossRefGoogle Scholar
  139. 139.
    Vandereycken, B.: Low-rank matrix completion by Riemannian optimization. SIAM J. Optim. 23(2), 1214–1236 (2013)MathSciNetMATHCrossRefGoogle Scholar
  140. 140.
    Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91(14), 147902 (2003)CrossRefGoogle Scholar
  141. 141.
    Wang, H., Thoss, M.: Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J. Chem Phys. 119(3), 1289–1299 (2003)CrossRefGoogle Scholar
  142. 142.
    White, S. R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992)CrossRefGoogle Scholar
  143. 143.
    White, S. R.: Density matrix renormalization group algorithms with a single center site. Phys. Rev. B 72(18), 180403 (2005)CrossRefGoogle Scholar
  144. 144.
    Wouters, S., Poelmans, W., Ayers, P. W., Van Neck, D.: CheMPS2: a free open-source spin-adapted implementation of the density matrix renormalization group for ab initio quantum chemistry. Comput. Phys. Commun. 185(6), 1501–1514 (2014)MathSciNetMATHCrossRefGoogle Scholar
  145. 145.
    Xiu, D.: Numerical Methods for Stochastic Computations. A Spectral Method Approach. Princeton University Press, Princeton, NJ (2010)MATHGoogle Scholar
  146. 146.
    Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci. 6(3), 1758–1789 (2013)MathSciNetMATHCrossRefGoogle Scholar
  147. 147.
    Zeidler, E.: Nonlinear Functional Analysis and its Applications. III. Springer-Verlag, New York (1985)MATHCrossRefGoogle Scholar
  148. 148.
    Zeidler, E.: Nonlinear Functional Analysis and its Applications. IV. Springer-Verlag, New York (1988)MATHCrossRefGoogle Scholar
  149. 149.
    Zwiernik, P.: Semialgebraic Statistics and Latent Tree Models. Chapman & Hall/CRC, Boca Raton, FL (2016)MATHGoogle Scholar

Copyright information

© SFoCM 2016

Authors and Affiliations

  • Markus Bachmayr
    • 1
  • Reinhold Schneider
    • 2
  • André Uschmajew
    • 3
  1. 1.Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7598Laboratoire Jacques-Louis LionsParisFrance
  2. 2.Institut für MathematikTechnische Universität BerlinBerlinGermany
  3. 3.Hausdorff Center for Mathematics & Institute for Numerical SimulationUniversity of BonnBonnGermany

Personalised recommendations