Foundations of Computational Mathematics

, Volume 17, Issue 4, pp 917–956 | Cite as

Convergence Rates of Adaptive Methods, Besov Spaces, and Multilevel Approximation

  • Tsogtgerel Gantumur


This paper concerns characterizations of approximation classes associated with adaptive finite element methods with isotropic h-refinements. It is known from the seminal work of Binev, Dahmen, DeVore and Petrushev that such classes are related to Besov spaces. The range of parameters for which the inverse embedding results hold is rather limited, and recently, Gaspoz and Morin have shown, among other things, that this limitation disappears if we replace Besov spaces by suitable approximation spaces associated with finite element approximation from uniformly refined triangulations. We call the latter spaces multievel approximation spaces and argue that these spaces are placed naturally halfway between adaptive approximation classes and Besov spaces, in the sense that it is more natural to relate multilevel approximation spaces with either Besov spaces or adaptive approximation classes, than to go directly from adaptive approximation classes to Besov spaces. In particular, we prove embeddings of multilevel approximation spaces into adaptive approximation classes, complementing the inverse embedding theorems of Gaspoz and Morin. Furthermore, in the present paper, we initiate a theoretical study of adaptive approximation classes that are defined using a modified notion of error, the so-called total error, which is the energy error plus an oscillation term. Such approximation classes have recently been shown to arise naturally in the analysis of adaptive algorithms. We first develop a sufficiently general approximation theory framework to handle such modifications, and then apply the abstract theory to second-order elliptic problems discretized by Lagrange finite elements, resulting in characterizations of modified approximation classes in terms of memberships of the problem solution and data into certain approximation spaces, which are in turn related to Besov spaces. Finally, it should be noted that throughout the paper we paid equal attention to both conforming and non-conforming triangulations.


Approximation classes Adaptivity Finite element methods Convergence rates Besov spaces Multilevel approximation 

Mathematics Subject Classification

41A25 41A65 65N15 65N30 


  1. 1.
    Bergh, J. and Löfström, J. (1976). Interpolation spaces. An introduction. Springer- Verlag, Berlin. Grundlehren der Mathematischen Wissenschaften, No. 223.Google Scholar
  2. 2.
    Binev, P., Dahmen, W., and DeVore, R. (2004). Adaptive finite element methods with convergence rates. Numer. Math., 97(2):219–268.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Binev, P., Dahmen, W., DeVore, R., and Petrushev, P. (2002). Approximation classes for adaptive methods. Serdica Math. J., 28(4):391–416. Dedicated to the memory of Vassil Popov on the occasion of his 60th birthday.Google Scholar
  4. 4.
    Birman, M. S. and Solomyak, M. Z. (1967). Piecewise polynomial approximations of functions of classes \(W^\alpha _p\). Mat. Sb. (N.S.), 73(3):331–355.MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bonito, A. and Nochetto, R. H. (2010). Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal., 48(2):734–771.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cascon, J. M., Kreuzer, C., Nochetto, R. H., and Siebert, K. G. (2008). Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal., 46(5):2524–2550.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cohen, A., Dahmen, W., and DeVore, R. (2001). Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comp., 70(233):27–75.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dekel, S. and Leviatan, D. (2004). Whitney estimates for convex domains with applications to multivariate piecewise polynomial approximation. Found. Comput. Math., 4(4):345–368.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    DeVore, R. A. and Lorentz, G. G. (1993). Constructive approximation, volume 303 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin.Google Scholar
  10. 10.
    Dörfler, W. (1996). A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal., 33(3):1106–1124.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Feischl, M., Führer, T., and Praetorius, D. (2014). Adaptive FEM with optimal convergence rates for a certain class of nonsymmetric and possibly nonlinear problems. SIAM J. Numer. Anal., 52(2):601–625.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gantumur, T., Harbrecht, H., and Stevenson, R. (2007). An optimal adaptive wavelet method without coarsening of the iterands. Math. Comp., 76(258):615–629.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gaspoz, F. D. and Morin, P. (2013). Approximation classes for adaptive higher order finite element approximation. Math. Comp. To appear.Google Scholar
  14. 14.
    Morin, P., Nochetto, R. H., and Siebert, K. G. (2000). Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal., 38(2):466–488 (electronic).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Nochetto, R. H., Siebert, K. G., and Veeser, A. (2009). Theory of adaptive finite element methods: an introduction. In Multiscale, nonlinear and adaptive approximation, pages 409–542. Springer, Berlin.Google Scholar
  16. 16.
    Oswald, P. (1994). Multilevel finite element approximation. Teubner Skripten zur Numerik. [Teubner Scripts on Numerical Mathematics]. B. G. Teubner, Stuttgart. Theory and applications.Google Scholar
  17. 17.
    Pietsch, A. (1981). Approximation spaces. J. Approx. Theory, 32(2):115–134.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Scott, L. R. and Zhang, S. (1990). Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp., 54(190):483–493.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Stevenson, R. (2007). Optimality of a standard adaptive finite element method. Found. Comput. Math., 7(2):245–269.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Stevenson, R. (2008). The completion of locally refined simplicial partitions created by bisection. Math. Comp., 77(261):227–241.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© SFoCM 2016

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada

Personalised recommendations