Advertisement

Foundations of Computational Mathematics

, Volume 17, Issue 1, pp 199–257 | Cite as

Lie Group Spectral Variational Integrators

  • James Hall
  • Melvin Leok
Article

Abstract

We present a new class of high-order variational integrators on Lie groups. We show that these integrators are symplectic and momentum-preserving, can be constructed to be of arbitrarily high order, or can be made to converge geometrically. Furthermore, these methods are capable of taking very large time-steps. We demonstrate the construction of one such variational integrator for the rigid body and discuss how this construction could be generalized to other related Lie group problems. We close with several numerical examples which demonstrate our claims and discuss further extensions of our work.

Keywords

Symplectic integrators Variational integrators Lie group integrators Geometric numerical integration 

Mathematics Subject Classification

37M15 65M70 65P10 70G75 70H25 

Notes

Acknowledgments

This work was supported in part by NSF Grants CMMI-1029445, DMS-1065972, CMMI-1334759, DMS-1411792, DMS-1345013, and NSF CAREER Award DMS-1010687.

References

  1. 1.
    A. I. Bobenko and Y. B. Suris. Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top. Comm. Math. Phys., 204(1):147–188, 1999.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    G. Bogfjellmo and H. Marthinsen. High-Order Symplectic Partitioned Lie Group Methods. Found. Comput. Math., 2015. doi: 10.1007/s10208-015-9257-9.
  3. 3.
    N. Bou-Rabee and J. E. Marsden. Hamilton-Pontryagin integrators on Lie groups. I. Introduction and structure-preserving properties. Found. Comput. Math., 9(2):197–219, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    N. Bou-Rabee and H. Owhadi. Stochastic variational integrators. IMA J. Numer. Anal., 29(2):421–443, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    N. Bou-Rabee and H. Owhadi. Long-run accuracy of variational integrators in the stochastic context. SIAM J. Numer. Anal., 48(1):278–297, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J. P. Boyd. Chebyshev and Fourier spectral methods. Dover Publications Inc., Mineola, NY, second edition, 2001.zbMATHGoogle Scholar
  7. 7.
    C. L. Burnett, D. D. Holm, and D. M. Meier. Inexact trajectory planning and inverse problems in the Hamilton-Pontryagin framework. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 469 (2160):20130249, 24, 2013.Google Scholar
  8. 8.
    E. Celledoni and B. Owren. Lie group methods for rigid body dynamics and time integration on manifolds. Comput. Methods Appl. Mech. Engrg., 192 (3-4):421–438, 2003.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    P. J. Channell and J. C. Scovel. Integrators for Lie-Poisson dynamical systems. Phys. D, 50(1):80–88, 1991.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    J. Cortés and S. Martínez. Non-holonomic integrators. Nonlinearity, 14(5):1365–1392, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Y. N. Fedorov and D. V. Zenkov. Discrete nonholonomic LL systems on Lie groups. Nonlinearity, 18(5):2211–2241, 2005.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration, volume 31 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 2006.Google Scholar
  13. 13.
    J. Hall and M. Leok. Spectral Variational Integrators. Numer. Math., 130(4):681–740, 2015.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna. Lie-group methods. Acta Numer., 9:215–365, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    S. M. Jalnapurkar, M. Leok, J. E. Marsden, and M. West. Discrete Routh reduction. J. Phys. A, 39(19):5521–5544, 2006.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    L. O. Jay. Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems. SIAM J. Numer. Anal., 33(1):368–387, 1996.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    L. O Jay. Structure preservation for constrained dynamics with super partitioned additive Runge-Kutta methods. SIAM J. Sci. Comput., 20(2):416–446, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    M. Kobilarov, J. E. Marsden, and G. S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete Contin. Dyn. Syst. Ser. S, 3(1): 61–84, 2010. ISSN 1937-1632.Google Scholar
  19. 19.
    S. Lall and M. West. Discrete variational Hamiltonian mechanics. J. Phys. A, 39(19):5509–5519, 2006.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    T. Lee, N. H. McClamroch, and M. Leok. A Lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3D pendulum. Proc. IEEE Conf. on Control Applications, pages 962–967, 2005. doi: 10.1109/CCA.2005.1507254.
  21. 21.
    T. Lee, M. Leok, and N. H. McClamroch. Lie group variational integrators for the full body problem. Comput. Methods Appl. Mech. Engrg., 196 (29-30):2907–2924, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    T. Lee, M. Leok, and N. H. McClamroch. Lagrangian mechanics and variational integrators on two-spheres. Internat. J. Numer. Methods Engrg., 79(9): 1147–1174, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    M. Leok. Foundations of Computational Geometric Mechanics. PhD thesis, California Institute of Technology, 2004. URL http://resolver.caltech.edu/CaltechETD:etd-03022004-000251.
  24. 24.
    M. Leok and T. Shingel. General techniques for constructing variational integrators. Front. Math. China, 7(2):273–303, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    M. Leok and J. Zhang. Discrete Hamiltonian variational integrators. IMA J. Numer. Anal., 31(4):1497–1532, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    A. Lew, J. E. Marsden, M. Ortiz, and M. West. Asynchronous variational integrators. Arch. Ration. Mech. Anal., 167(2):85–146, 2003.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    J. E. Marsden and T. S. Ratiu. Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, volume 17 of Texts in Applied Mathematics. Springer-Verlag, New York, second edition, 1999.Google Scholar
  28. 28.
    J. E. Marsden and M. West. Discrete mechanics and variational integrators. Acta Numer., 10:357–514, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    J. E. Marsden, G. W. Patrick, and S. Shkoller. Multisymplectic geometry, variational integrators, and nonlinear PDEs. Comm. Math. Phys., 199(2):351–395, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    J. E. Marsden, S. Pekarsky, and S. Shkoller. Discrete Euler-Poincaré and Lie-Poisson equations. Nonlinearity, 12(6):1647, 1999.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    J. E. Marsden, S. Pekarsky, and S. Shkoller. Symmetry reduction of discrete Lagrangian mechanics on Lie groups. J. Geom. Phys., 36(1-2):140–151, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    R. McLachlan and M. Perlmutter. Integrators for nonholonomic mechanical systems. J. Nonlinear Sci., 16(4):283–328, 2006.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    R. I. McLachlan and C. Scovel. Equivariant constrained symplectic integration. J. Nonlinear Sci., 5(3):233–256, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    R. I. McLachlan, K. Modin, and O. Verdier. Collective Lie-Poisson integrators on \({\mathbb{R}}^3\). IMA J. Numer. Anal., 35(2):546–560, 2015.MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    J. Moser and A.P. Veselov. Discrete versions of some classical integrable systems and factorization of matrix polynomials. Comm. Math. Phys., 139(2):217–243, 1991.MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    T. Ohsawa, A.M. Bloch, and M. Leok. Discrete Hamilton–Jacobi theory. SIAM J. Control Optim., 49(4):1829–1856, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    G. W. Patrick and C. Cuell. Error analysis of variational integrators of unconstrained Lagrangian systems. Numer. Math., 113(2):243–264, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    L. N. Trefethen. Spectral methods in MATLAB, volume 10 of Software, Environments, and Tools. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.Google Scholar
  39. 39.
    J. Vankerschaver, C. Liao, and M. Leok. Generating functionals and Lagrangian partial differential equations. J. Math. Phys., 54(8):082901, 22, 2013.Google Scholar
  40. 40.
    G. Zhong and J. E. Marsden. Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators. Phys. Lett. A, 133(3):134–139, 1988.MathSciNetCrossRefGoogle Scholar

Copyright information

© SFoCM 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of California, San DiegoLa JollaUSA

Personalised recommendations