Foundations of Computational Mathematics

, Volume 14, Issue 4, pp 689–720 | Cite as

Effective Approximation for the Semiclassical Schrödinger Equation

  • Philipp Bader
  • Arieh IserlesEmail author
  • Karolina Kropielnicka
  • Pranav Singh


The computation of the semiclassical Schrödinger equation presents major challenges because of the presence of a small parameter. Assuming periodic boundary conditions, the standard approach consists of semi-discretisation with a spectral method, followed by an exponential splitting. In this paper we sketch an alternative strategy. Our analysis commences with the investigation of the free Lie algebra generated by differentiation and by multiplication with the interaction potential: it turns out that this algebra possesses a structure which renders it amenable to a very effective form of asymptotic splitting: exponential splitting where consecutive terms are scaled by increasing powers of the small parameter. This leads to methods which attain high spatial and temporal accuracy and whose cost scales as \({\mathcal {O}}\!\left( M\log M\right) \), where \(M\) is the number of degrees of freedom in the discretisation.


Semiclassical Schrödinger equation Exponential splittings Zassenhaus splitting Spectral collocation Krylov subspace methods 

Mathematics Subject Classification

Primary 65M70 Secondary 35Q41 65L05 65F60 


  1. 1.
    Blanes, S., Casas, F. & Murua, A. (2006), Symplectic splitting operator methods tailored for the time-dependent Schrödinger equation, J. Chem. Phys. 124, 234–105.Google Scholar
  2. 2.
    Bungartz, H.-J. & Griebel, M. (2004), Sparse grids, Acta Numer. 13, 147–269.Google Scholar
  3. 3.
    Casas, F. & Murua, A. (2009), An efficient algorithm for computing the Baker–Campbell–Hausdorff series and some of its applications, J. Math. Phys. 50, (electronic).Google Scholar
  4. 4.
    Faou, E. (2012), Geometric Numerical Integration and Schrödinger Equations, Zurich Lectures in Advanced Mathematics, The European Mathematical Society, Zürich.Google Scholar
  5. 5.
    Gallopoulos, E. & Saad, Y. (1992), Efficient solution of parabolic equations by Krylov approximation methods, SIAM J. Sci. Stat. Comput. 13, 1236–1264.Google Scholar
  6. 6.
    Golub, G. H. & Van Loan, C. F. (1996), Matrix Computations, 3rd edn, Johns Hopkins University Press, Baltimore.Google Scholar
  7. 7.
    Griffiths, D. J. (2004), Introduction to Quantum Mechanics, 2nd edn, Prentice Hall, Upper Saddle River, NJ.Google Scholar
  8. 8.
    Hairer, E., Lubich, C. & Wanner, G. (2006), Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn, Springer, Berlin.Google Scholar
  9. 9.
    Hesthaven, J. S., Gottlieb, S. & Gottlieb, D. (2007), Spectral Methods for Time-Dependent Problems, Cambridge University Press, Cambridge.Google Scholar
  10. 10.
    Hochbruck, M. & Lubich, C. (1997), On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 34, 1911–1925.Google Scholar
  11. 11.
    Iserles, A. (2008), A First Course in the Numerical Analysis of Differential Equations, 2nd edn, Cambridge University Press, Cambridge.Google Scholar
  12. 12.
    Iserles, A., Munthe-Kaas, H. Z., Nørsett, S. P. & Zanna, A. (2000), Lie-group methods, Acta Numer. 9, 215–365.Google Scholar
  13. 13.
    Jin, S., Markowich, P. & Sparber, C. (2011), Mathematical and computational methods for semiclassical Schrödinger equations, Acta Numer. 20, 121–210.Google Scholar
  14. 14.
    Lubich, C. (2008), From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, Zurich Lectures in Advanced Mathematics, The European Mathematical Society , Zürich.Google Scholar
  15. 15.
    McLachlan, R. I. & Quispel, G. R. W. (2002), Splitting methods, Acta Numer. 11, 341–434.Google Scholar
  16. 16.
    McLachlan, R. I., Munthe-Kaas, H. Z., Quispel, G. R. W. & Zanna, A. (2008), Explicit volume-preserving splitting methods for linear and quadratic divergence-free vector fields, Found. Comput. Math. 8, 335–3554.Google Scholar
  17. 17.
    Oteo, J. A. (1991), The Baker–Campbell–Hausdorff formula and nested commutator identities, J. Math. Phys. 32, 419–424.Google Scholar
  18. 18.
    Reutenauer, C. (1993), Free Lie Algebras, London Mathematical Society Monographs 7, Oxford University Press, Oxford.Google Scholar
  19. 19.
    Tal Ezer, H. & Kosloff, R. (1984), An accurate and efficient scheme for propagating the time dependent Schrödinger equation, J. Chem. Phys. 81, 3967–3976.Google Scholar
  20. 20.
    Yošida, H. (1990), Construction of higher order symplectic integrators, Phys. Lett. 150, 262–268.Google Scholar

Copyright information

© SFoCM 2014

Authors and Affiliations

  • Philipp Bader
    • 1
  • Arieh Iserles
    • 2
    Email author
  • Karolina Kropielnicka
    • 2
    • 3
  • Pranav Singh
    • 2
  1. 1.Instituto de Matemática MultidisciplinarUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.Department of Applied Mathematics and Mathematical PhysicsUniversity of CambridgeCambridgeUK
  3. 3.Institute of Mathematics, University of GdańskGdańskPoland

Personalised recommendations