Foundations of Computational Mathematics

, Volume 13, Issue 5, pp 763–787 | Cite as

Approximation of Parametric Derivatives by the Empirical Interpolation Method

  • Jens L. Eftang
  • Martin A. Grepl
  • Anthony T. Patera
  • Einar M. Rønquist


We introduce a general a priori convergence result for the approximation of parametric derivatives of parametrized functions. We consider the best approximations to parametric derivatives in a sequence of approximation spaces generated by a general approximation scheme, and we show that these approximations are convergent provided that the best approximation to the function itself is convergent. We also provide estimates for the convergence rates. We present numerical results with spaces generated by a particular approximation scheme—the Empirical Interpolation Method—to confirm the validity of the general theory.


Function approximation A priori convergence Empirical interpolation method Parametric derivatives Sensitivity derivatives 

Mathematics Subject Classification (2010)

G5G99 65D05 41A05 41A25 


  1. 1.
    M. Barrault, N.C. Nguyen, Y. Maday, A.T. Patera, An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math. 339, 667–672 (2004). MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    C. Bernardi, Y. Maday, Spectral methods, in Handbook of Numerical Analysis (North-Holland, Amsterdam, 1997), pp. 209–485. Google Scholar
  3. 3.
    J. Borggaard, J. Burns, A PDE sensitivity equation method for optimal aerodynamic design, J. Comput. Phys. 136(2), 366–384 (1997). MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral methods. Scientific Computation, (Springer, Berlin, 2006). Google Scholar
  5. 5.
    R. Corless, G. Gonnet, D. Hare, D. Jeffrey, D. Knuth, On the Lambert W function, Adv. Comput. Math. 5, 329–359 (1996). MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    J.L. Eftang, M.A. Grepl, A.T. Patera, A posteriori error bounds for the empirical interpolation method, C. R. Math. 348(9–10), 575–579 (2010). MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    M. Grepl, A posteriori error bounds for reduced-basis approximations of nonaffine and nonlinear parabolic partial differential equations, Math. Models Methods Appl. Sci. 22, 3 (2012). MathSciNetCrossRefGoogle Scholar
  8. 8.
    M.A. Grepl, Y. Maday, N.C. Nguyen, A.T. Patera, Efficient reduced basis treatment of nonaffine and nonlinear partial differential equations, ESAIM: M2AN 41(3), 575–605 (2007). MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Y. Maday, N.C. Nguyen, A.T. Patera, G.S.H. Pau, A general multipurpose interpolation procedure: the magic points, Commun. Pure Appl. Math. 8, 383–404 (2009). MathSciNetMATHGoogle Scholar
  10. 10.
    I. Oliveira, A. Patera, Reduced-basis techniques for rapid reliable optimization of systems described by affinely parametrized coercive elliptic partial differential equations, Optim. Eng. 8, 43–65 (2007). MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics. Texts Appl. Math., vol. 37 (Springer, New York, 1991). Google Scholar
  12. 12.
    S.C. Reddy, J.A.C. Weideman, The accuracy of the Chebyshev differencing method for analytic functions, SIAM J. Numer. Anal. 42(5), 2176–2187 (2005). MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    T.J. Rivlin, The Chebyshev Polynomials (Wiley-Interscience, New York, 1974). MATHGoogle Scholar
  14. 14.
    G. Rozza, D.B.P. Huynh, A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Methods Eng. 15(3), 229–275 (2008). MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    E. Tadmor, The exponential accuracy of Fourier and Chebyshev differencing methods, SIAM J. Numer. Anal. 23(1), 1–10 (1986). MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© SFoCM 2012

Authors and Affiliations

  • Jens L. Eftang
    • 1
  • Martin A. Grepl
    • 2
  • Anthony T. Patera
    • 1
  • Einar M. Rønquist
    • 3
  1. 1.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Numerical MathematicsRWTH Aachen UniversityAachenGermany
  3. 3.Department of Mathematical SciencesNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations