Advertisement

Foundations of Computational Mathematics

, Volume 12, Issue 5, pp 573–623 | Cite as

Greedy Approximation of High-Dimensional Ornstein–Uhlenbeck Operators

  • Leonardo E. FigueroaEmail author
  • Endre Süli
Article

Abstract

We investigate the convergence of a nonlinear approximation method introduced by Ammar et al. (J. Non-Newtonian Fluid Mech. 139:153–176, 2006) for the numerical solution of high-dimensional Fokker–Planck equations featuring in Navier–Stokes–Fokker–Planck systems that arise in kinetic models of dilute polymers. In the case of Poisson’s equation on a rectangular domain in ℝ2, subject to a homogeneous Dirichlet boundary condition, the mathematical analysis of the algorithm was carried out recently by Le Bris, Lelièvre and Maday (Const. Approx. 30:621–651, 2009), by exploiting its connection to greedy algorithms from nonlinear approximation theory, explored, for example, by DeVore and Temlyakov (Adv. Comput. Math. 5:173–187, 1996); hence, the variational version of the algorithm, based on the minimization of a sequence of Dirichlet energies, was shown to converge. Here, we extend the convergence analysis of the pure greedy and orthogonal greedy algorithms considered by Le Bris et al. to a technically more complicated situation, where the Laplace operator is replaced by an Ornstein–Uhlenbeck operator of the kind that appears in Fokker–Planck equations that arise in bead–spring chain type kinetic polymer models with finitely extensible nonlinear elastic potentials, posed on a high-dimensional Cartesian product configuration space D=D 1×⋯×D N contained in ℝ Nd , where each set D i , i=1,…,N, is a bounded open ball in ℝ d , d=2,3.

Keywords

Nonlinear approximation Greedy algorithm Fokker–Planck equation 

Mathematics Subject Classification

65N15 65D15 41A63 41A25 

Notes

Acknowledgements

The first author acknowledges a doctoral scholarship from the Chilean government’s Comisión Nacional de Investigación Científica y Tecnológica. The second author was supported by the EPSRC Science and Innovation award to the Oxford Centre for Nonlinear PDE (EP/E035027/1).

We are grateful to Professor Marco Marletta (Cardiff University) for helpful hints regarding the Liouville transformation. We also wish to express our gratitude to Professors Claude Le Bris and Tony Lelièvre (CERMICS, École des Ponts ParisTech) and the anonymous referee for helpful and constructive suggestions.

References

  1. 1.
    R.A. Adams, J.J.F. Fournier, Sobolev Spaces, 2nd edn. Pure and Applied Mathematics, vol. 140 (Elsevier/Academic Press, Amsterdam, 2003). zbMATHGoogle Scholar
  2. 2.
    A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids, J. Non-Newton. Fluid Mech. 139(3), 153–176 (2006). doi: 10.1016/j.jnnfm.2006.07.007. http://www.sciencedirect.com/science/article/pii/S0377025706001662. zbMATHCrossRefGoogle Scholar
  3. 3.
    A. Ammar, B. Mokdad, F. Chinesta, R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids: Part II: Transient simulation using space-time separated representations, J. Non-Newton. Fluid Mech. 144(2–3), 98–121 (2007). doi: 10.1016/j.jnnfm.2007.03.009. http://www.sciencedirect.com/science/article/pii/S0377025707000821. zbMATHCrossRefGoogle Scholar
  4. 4.
    A. Ammar, M. Normandin, F. Daim, D. González, E. Cueto, F. Chinesta, Non incremental strategies based on separated representations: applications in computational rheology, Commun. Math. Sci. 8(3), 671–695 (2010). http://projecteuclid.org/getRecord?id=euclid.cms/1282747135. MathSciNetzbMATHGoogle Scholar
  5. 5.
    J.W. Barrett, E. Süli, Existence of global weak solutions to some regularized kinetic models for dilute polymers, Multiscale Model. Simul. 6(2), 506–546 (2007). (electronic). doi: 10.1137/060666810. MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    J.W. Barrett, E. Süli, Existence of global weak solutions to dumbbell models for dilute polymers with microscopic cut-off, Math. Models Methods Appl. Sci. 18(6), 935–971 (2008). doi: 10.1142/S0218202508002917. MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    J.W. Barrett, E. Süli, Numerical approximation of corotational dumbbell models for dilute polymers, IMA J. Numer. Anal. 29(4), 937–959 (2009). doi: 10.1093/imanum/drn022. MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    J.W. Barrett, E. Süli, Existence and equilibration of global weak solutions to kinetic models for dilute polymers I: finitely extensible nonlinear bead–spring chains, Math. Models Methods Appl. Sci. 21(6), 1211–1289 (2011). doi: 10.1142/S0218202511005313. MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    J.W. Barrett, E. Süli, Finite element approximation of kinetic dilute polymer models with microscopic cut-off, Math. Model. Numer. Anal. 45(1), 39–89 (2011). doi: 10.1051/m2an/2010030. MathSciNetCrossRefGoogle Scholar
  10. 10.
    R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, 2nd edn. Kinetic Theory, vol. 2 (Wiley, New York, 1987). Google Scholar
  11. 11.
    M.Š. Birman, M.Z. Solomjak, The principal term of the spectral asymptotics for “non-smooth” elliptic problems, Funkc. Anal. Ego Prilož. 4(4), 1–13 (1970). Translated in Funct. Anal. Appl. 4, 265–275 (1970). MathSciNetGoogle Scholar
  12. 12.
    M.Š. Birman, M.Z. Solomjak, Spectral asymptotics of nonsmooth elliptic operators. I, Tr. Mosk. Mat. Obŝ. 27, 3–52 (1972). Translated in Trans. Mosc. Math. Soc. 27, 1–5 (1972). MathSciNetzbMATHGoogle Scholar
  13. 13.
    H. Brezis, Analyse fonctionnelle: Théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise (Masson, Paris, 1983). zbMATHGoogle Scholar
  14. 14.
    F.E. Browder, On the spectral theory of elliptic differential operators. I, Math. Ann. 142, 22–130 (1961). doi: 10.1007/BF01343363. MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    E. Cancès, V. Ehrlacher, T. Lelièvre, Convergence of a greedy algorithm for high-dimensional convex nonlinear problems, Math. Models Methods Appl. Sci. 21(12), 2433–2467 (2011). doi: 10.1142/S0218202511005799. MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    F. Chinesta, A. Ammar, A. Leygue, R. Keunings, An overview of the proper generalized decomposition with applications in computational rheology, J. Non-Newton. Fluid Mech. 166(11), 578–592 (2011). doi: 10.1016/j.jnnfm.2010.12.012. http://www.sciencedirect.com/science/article/pii/S0377025711000061. zbMATHCrossRefGoogle Scholar
  17. 17.
    C. Clark, The asymptotic distribution of eigenvalues and eigenfunctions for elliptic boundary value problems, SIAM Rev. 9, 627–646 (1967). doi: 10.1137/1009105. MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    A. Cohen, A Padé approximant to the inverse Langevin function, Rheol. Acta 30(3), 270–273 (1991). doi: 10.1007/BF00366640. http://www.springerlink.com/content/t240j86m14247501. CrossRefGoogle Scholar
  19. 19.
    R. Courant, D. Hilbert, Methods of Mathematical Physics, vol. I (Interscience Publishers, Inc., New York, 1953). Google Scholar
  20. 20.
    E.B. Davies, Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics, vol. 42 (Cambridge University Press, Cambridge, 1995). doi: 10.1017/CBO9780511623721. CrossRefGoogle Scholar
  21. 21.
    R.A. DeVore, V.N. Temlyakov, Some remarks on greedy algorithms, Adv. Comput. Math. 5(2–3), 173–187 (1996). doi: 10.1007/BF02124742. MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    L.E. Figueroa, E. Süli, Greedy approximation of high-dimensional Ornstein–Uhlenbeck operators. Tech. rep., 2012. arXiv:1103.0726v2 [math.NA].
  23. 23.
    S.R. Ghorpade, B.V. Limaye, A Course in Multivariable Calculus and Analysis. Undergraduate Texts in Mathematics (Springer, New York, 2010). doi: 10.1007/978-1-4419-1621-1. zbMATHCrossRefGoogle Scholar
  24. 24.
    D. González, A. Ammar, F. Chinesta, E. Cueto, Recent advances on the use of separated representations, Int. J. Numer. Methods Eng. 81(5), 637–659 (2010). zbMATHGoogle Scholar
  25. 25.
    D.J. Knezevic, E. Süli, A heterogeneous alternating-direction method for a micro-macro dilute polymeric fluid model, Math. Model. Numer. Anal. 43(6), 1117–1156 (2009). doi: 10.1051/m2an/2009034. MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    A. Kufner, Weighted Sobolev Spaces (Wiley, New York, 1985). Translated from the Czech. zbMATHGoogle Scholar
  27. 27.
    A. Kufner, B. Opic, How to define reasonably weighted Sobolev spaces, Comment. Math. Univ. Carol. 25(3), 537–554 (1984). MathSciNetzbMATHGoogle Scholar
  28. 28.
    W. Kuhn, F. Grün, Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe, Kolloid Z. 101(3), 248–271 (1942). doi: 10.1007/BF01793684. CrossRefGoogle Scholar
  29. 29.
    C. Le Bris, T. Lelièvre, Y. Maday, Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations, Constr. Approx. 30(3), 621–651 (2009). doi: 10.1007/s00365-009-9071-1. MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    G.M. Leonenko, T.N. Phillips, On the solution of the Fokker–Planck equation using a high-order reduced basis approximation, Comput. Methods Appl. Mech. Eng. 199(1–4), 158–168 (2009). doi: 10.1016/j.cma.2009.09.028. MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    M. Marcus, V.J. Mizel, Y. Pinchover, On the best constant for Hardy’s inequality in R n, Trans. Am. Math. Soc. 350(8), 3237–3255 (1998). doi: 10.1090/S0002-9947-98-02122-9. MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    N. Masmoudi, Well-posedness for the FENE dumbbell model of polymeric flows, Commun. Pure Appl. Math. 61(12), 1685–1714 (2008). doi: 10.1002/cpa.20252. MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    A. Nouy, A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations, Comput. Methods Appl. Mech. Eng. 196(45–48), 4521–4537 (2007). doi: 10.1016/j.cma.2007.05.016. MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    A. Nouy, Generalized spectral decomposition method for solving stochastic finite element equations: invariant subspace problem and dedicated algorithms, Comput. Methods Appl. Mech. Eng. 197(51–52), 4718–4736 (2008). doi: 10.1016/j.cma.2008.06.012. MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    A. Nouy, O.P. Le Maître, Generalized spectral decomposition for stochastic nonlinear problems, J. Comput. Phys. 228(1), 202–235 (2009). doi: 10.1016/j.jcp.2008.09.010. MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    B. Opic, A. Kufner, Hardy-Type Inequalities. Pitman Research Notes in Mathematics Series, vol. 219 (Longman Scientific & Technical, Harlow, 1990). zbMATHGoogle Scholar
  37. 37.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics. I, 2nd edn. (Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980). Functional analysis. zbMATHGoogle Scholar
  38. 38.
    E. Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichungen, Math. Ann. 63(4), 433–476 (1907). doi: 10.1007/BF01449770. http://www.springerlink.com/content/k636412j41k8316w. MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of the Unione Matematica Italiana, vol. 3 (Springer, Berlin, 2007). zbMATHGoogle Scholar
  40. 40.
    G.M. Taščijan, The spectral asymptotic behavior of elliptic boundary value problems with weak degeneracy, in Proceedings of the Sixth Winter School on Mathematical Programming and Related Questions (Drogobych 1973), Functional Analysis and Its Applications, pp. 277–293 Akad. Nauk SSSR Central. Èkonom.-Mat. Inst., Moscow, 1975) (Russian). Google Scholar
  41. 41.
    G.M. Taščijan, The classical formula of the asymptotic behavior of the spectrum of elliptic equations that are degenerate on the boundary of the domain, Mat. Zametki 30(6), 871–880, 959 (1981). Translated in Math. Notes 30(6), 937–942 (1981). doi: 10.1007/BF01145775. MathSciNetGoogle Scholar
  42. 42.
    V.N. Temlyakov, Greedy approximation, Acta Numer. 17, 235–409 (2008). doi: 10.1017/S0962492906380014. MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    V.S. Vladimirov, Methods of the Theory of Generalized Functions. Analytical Methods and Special Functions, vol. 6 (Taylor & Francis, London, 2002). zbMATHGoogle Scholar
  44. 44.
    I.L. Vulis, M.Z. Solomjak, Spectral asymptotic analysis for degenerate second order elliptic operators, Izv. Akad. Nauk SSSR, Ser. Mat. 38, 1362–1392 (1974). http://mi.mathnet.ru/eng/izv2017. Translated in Math. USSR-Izv. 8(6), 1343–1371 (1974). MathSciNetzbMATHGoogle Scholar
  45. 45.
    H.R. Warner, Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells, Ind. Eng. Chem. Fundam. 11(3), 379–387 (1972). doi: 10.1021/i160043a017. MathSciNetCrossRefGoogle Scholar
  46. 46.
    E. Zeidler, Applied Functional Analysis. Applications to Mathematical Physics. Applied Mathematical Sciences, vol. 108 (Springer, New York, 1995). zbMATHGoogle Scholar

Copyright information

© SFoCM 2012

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of OxfordOxfordUK
  2. 2.Centro de Investigación en Ingeniería Matemática (CI²MA)Universidad de ConcepciónConcepciónChile

Personalised recommendations