Foundations of Computational Mathematics

, Volume 12, Issue 3, pp 327–362 | Cite as

A Complex Analogue of Toda’s Theorem

  • Saugata BasuEmail author


Toda (SIAM J. Comput. 20(5):865–877, 1991) proved in 1989 that the (discrete) polynomial time hierarchy, PH, is contained in the class P #P , namely the class of languages that can be decided by a Turing machine in polynomial time given access to an oracle with the power to compute a function in the counting complexity class #P. This result, which illustrates the power of counting, is considered to be a seminal result in computational complexity theory. An analogous result (with a compactness hypothesis) in the complexity theory over the reals (in the sense of Blum–Shub–Smale real machines (Blum et al. in Bull. Am. Math. Soc. 21(1):1–46, 1989) was proved in Basu and Zell (Found. Comput. Math. 10(4):429–454, 2010). Unlike Toda’s proof in the discrete case, which relied on sophisticated combinatorial arguments, the proof in Basu and Zell (Found. Comput. Math. 10(4):429–454, 2010) is topological in nature; the properties of the topological join are used in a fundamental way. However, the constructions used in Basu and Zell (Found. Comput. Math. 10(4):429–454, 2010) were semi-algebraic—they used real inequalities in an essential way and as such do not extend to the complex case. In this paper, we extend the techniques developed in Basu and Zell (Found. Comput. Math. 10(4):429–454, 2010) to the complex projective case. A key role is played by the complex join of quasi-projective complex varieties. As a consequence, we obtain a complex analogue of Toda’s theorem. The results of this paper, combined with those in Basu and Zell (Found. Comput. Math. 10(4):429–454, 2010), illustrate the central role of the Poincaré polynomial in algorithmic algebraic geometry, as well as in computational complexity theory over the complex and real numbers: the ability to compute it efficiently enables one to decide in polynomial time all languages in the (compact) polynomial hierarchy over the appropriate field.


Polynomial hierarchy Betti numbers Constructible sets Toda’s theorem 

Mathematics Subject Classification (2000)

Primary 14F25 14Q20 Secondary 68Q15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Basu, R. Pollack, M.-F. Roy, Algorithms in Real Algebraic Geometry, 2nd edn. Algorithms and Computation in Mathematics, vol. 10 (Springer, Berlin, 2006). MR 1998147 (2004g:14064). zbMATHGoogle Scholar
  2. 2.
    S. Basu, T. Zell, Polynomial hierarchy, Betti numbers, and a real analogue of Toda’s theorem, Found. Comput. Math. 10(4), 429–454 (2010). MR 2657948. MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    C. Beltrán, L.M. Pardo, Smale’s 17th problem: average polynomial time to compute affine and projective solutions, J. Am. Math. Soc. 22(2), 363–385 (2009). MR 2476778 (2009m:90147). zbMATHCrossRefGoogle Scholar
  4. 4.
    L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines, Bull. Am. Math. Soc. 21(1), 1–46 (1989). MR 90a:68022. MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation (Springer, New York, 1998). With a foreword by Richard M. Karp. MR 99a:68070. Google Scholar
  6. 6.
    P. Bürgisser, F. Cucker, Variations by complexity theorists on three themes of Euler, Bézout, Betti, and Poincaré, in Complexity of Computations and Proofs, ed. by J. Krajicek, Quad. Mat., Dept. Math., vol. 13 (Seconda Univ. Napoli, Caserta, 2004), pp. 73–151. MR 2131406 (2006c:68053). Google Scholar
  7. 7.
    P. Bürgisser, F. Cucker, Counting complexity classes for numeric computations. II. Algebraic and semialgebraic sets, J. Complex. 22(2), 147–191 (2006). MR 2200367 (2007b:68059). zbMATHCrossRefGoogle Scholar
  8. 8.
    P. Bürgisser, F. Cucker, On a problem posed by Steve Smale, Ann. Math. 174(3), 1785–1836 (2011). zbMATHCrossRefGoogle Scholar
  9. 9.
    P. Bürgisser, F. Cucker, M. Lotz, Counting complexity classes for numeric computations. III. Complex projective sets, Found. Comput. Math. 5(4), 351–387 (2005). MR 2189543 (2006h:68039). MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    J.H. Davenport, J. Heintz, Real quantifier elimination is doubly exponential, J. Symb. Comput. 5(1/2), 29–35 (1988). MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    P. Deligne, La conjecture de Weil. I, Publ. Math. IHÉS 43, 273–307 (1974). MR 0340258 (49 #5013). MathSciNetGoogle Scholar
  12. 12.
    P. Deligne, La conjecture de Weil. II, Publ. Math. IHÉS 52, 137–252 (1980). MR 601520 (83c:14017) MathSciNetzbMATHGoogle Scholar
  13. 13.
    B. Dwork, On the rationality of the zeta function of an algebraic variety, Am. J. Math. 82(3), 631–648 (1960). MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    A. Gabrielov, N. Vorobjov, T. Zell, Betti numbers of semialgebraic and sub-Pfaffian sets, J. Lond. Math. Soc. 69(1), 27–43 (2004). MR 2025325 (2004k:14105). MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    R. Godement, Topologie algébrique et théorie des faisceaux, in Actualit’es Sci. Ind. No. 1252. Publ. Math. Univ. Strasbourg, vol. 13 (Hermann, Paris, 1958). MR 0102797 (21 #1583). Google Scholar
  16. 16.
    N.M. Katz, Sums of Betti numbers in arbitrary characteristic, Finite Fields Appl. 7(1), 29–44 (2001). Dedicated to Professor Chao Ko on the occasion of his 90th birthday. MR 1803934 (2002d:14028). MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    H.B. Lawson Jr., Algebraic cycles and homotopy theory, Ann. Math. 129(2), 253–291 (1989). MR 986794 (90h:14008). zbMATHCrossRefGoogle Scholar
  18. 18.
    J. Matoušek, Using the Borsuk–Ulam theorem, in Universitext. Lectures on Topological Methods in Combinatorics and Geometry (Springer, Berlin, 2003). Written in cooperation with Anders Björner and Günter M. Ziegler. MR 1988723 (2004i:55001). Google Scholar
  19. 19.
    J. McCleary, A User’s Guide to Spectral Sequences, 2nd edn. Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 2001). zbMATHGoogle Scholar
  20. 20.
    K. Meer, Counting problems over the reals, Theor. Comput. Sci. 242(1–2), 41–58 (2000). MR 1769145 (2002g:68041). MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    C. Papadimitriou, Computational Complexity (Addison-Wesley, Reading, 1994). zbMATHGoogle Scholar
  22. 22.
    P. Scheiblechner, On the complexity of deciding connectedness and computing Betti numbers of a complex algebraic variety, J. Complex. 23(3), 359–379 (2007). MR 2330991 (2009d:14020). MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    U. Schöning, Probabilistic complexity classes and lowness, J. Comput. Syst. Sci. 39(1), 84–100 (1989). MR 1013721 (91b:68041a). zbMATHCrossRefGoogle Scholar
  24. 24.
    M. Shub, S. Smale, Complexity of Bézout’s theorem. I. Geometric aspects, J. Am. Math. Soc. 6(2), 459–501 (1993). MR 1175980 (93k:65045). MathSciNetzbMATHGoogle Scholar
  25. 25.
    M. Shub, S. Smale, On the intractability of Hilbert’s Nullstellensatz and an algebraic version of “\(\mathrm{NP}\not=\mathrm{P}\)?”, Duke Math. J. 81(1), 47–54 (1995). (1996), A celebration of John F. Nash, Jr. MR 1381969 (97h:03067). MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    E.H. Spanier, Algebraic Topology (McGraw-Hill, New York, 1966). MR 0210112 (35 #1007). zbMATHGoogle Scholar
  27. 27.
    L. Stockmeyer, The polynomial-time hierarchy, Theor. Comput. Sci. 3(1), 1–22 (1976). (1977). MR 0438810 (55 #11716). MathSciNetCrossRefGoogle Scholar
  28. 28.
    S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput. 20(5), 865–877 (1991). MR 1115655 (93a:68047). MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    L.G. Valiant, V.V. Vazirani, NP is as easy as detecting unique solutions, Theor. Comput. Sci. 47(1), 85–93 (1986). MR 871466 (88i:68021). MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    A. Weil, Number of solutions of equations over finite fields, Bull. Am. Math. Soc. 55, 497–508 (1949). MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© SFoCM 2011

Authors and Affiliations

  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations