Foundations of Computational Mathematics

, Volume 11, Issue 4, pp 417–487 | Cite as

Gromov–Wasserstein Distances and the Metric Approach to Object Matching

Article

Abstract

This paper discusses certain modifications of the ideas concerning the Gromov–Hausdorff distance which have the goal of modeling and tackling the practical problems of object matching and comparison. Objects are viewed as metric measure spaces, and based on ideas from mass transportation, a Gromov–Wasserstein type of distance between objects is defined. This reformulation yields a distance between objects which is more amenable to practical computations but retains all the desirable theoretical underpinnings. The theoretical properties of this new notion of distance are studied, and it is established that it provides a strict metric on the collection of isomorphism classes of metric measure spaces. Furthermore, the topology generated by this metric is studied, and sufficient conditions for the pre-compactness of families of metric measure spaces are identified. A second goal of this paper is to establish links to several other practical methods proposed in the literature for comparing/matching shapes in precise terms. This is done by proving explicit lower bounds for the proposed distance that involve many of the invariants previously reported by researchers. These lower bounds can be computed in polynomial time. The numerical implementations of the ideas are discussed and computational examples are presented.

Keywords

Gromov–Hausdorff distances Gromov–Wasserstein distances Data analysis Shape matching Mass transport Metric measure spaces 

Mathematics Subject Classification (2000)

68T10 53C23 54E35 60D05 68U05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Alestalo, D.A. Trotsenko, J. Väisälä, Isometric approximation, Isr. J. Math. 125, 61–82 (2001). MATHCrossRefGoogle Scholar
  2. 2.
    L. Ambrosio, P. Tilli, Topics on Analysis in Metric Spaces. Oxford Lecture Series in Mathematics and Its Applications, vol. 25 (Oxford University Press, Oxford, 2004). MATHGoogle Scholar
  3. 3.
    M. Ankerst, G. Kastenmüller, H.-P. Kriegel, T. Seidl, 3D shape histograms for similarity search and classification in spatial databases, in SSD ’99: Proceedings of the 6th International Symposium on Advances in Spatial Databases, London, UK (Springer, Berlin, 1999), pp. 207–226. Google Scholar
  4. 4.
    S. Belongie, J. Malik, J. Puzicha, Shape matching and object recognition using shape contexts, IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002). CrossRefGoogle Scholar
  5. 5.
    S. Berchtold, Geometry-based search of similar parts. Ph.D. thesis, University of Munich, Germany (1998). Google Scholar
  6. 6.
    P. Billingsley, Probability and Measure. Wiley Series in Probability and Mathematical Statistics, 3rd edn. (Wiley, New York, 1995). MATHGoogle Scholar
  7. 7.
    G.S. Bloom, A counterexample to a theorem of S. Piccard, J. Comb. Theory, Ser. A 22(3), 378–379 (1977). MATHCrossRefGoogle Scholar
  8. 8.
    F.L. Bookstein, The study of shape transformation after D’Arcy Thompson, Math. Biosci. 34, 177–219 (1977). MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    F.L. Bookstein, The Measurement of Biological Shape and Shape Change (Springer, Berlin, 1978). MATHGoogle Scholar
  10. 10.
    F.L. Bookstein, Morphometric Tools for Landmark Data (Cambridge University Press, Cambridge, 1997). Geometry and biology, reprint of the 1991 original. Google Scholar
  11. 11.
    M. Boutin, G. Kemper, On reconstructing n-point configurations from the distribution of distances or areas, Adv. Appl. Math. 32(4), 709–735 (2004). MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    D. Brinkman, P.J. Olver, Invariant histograms. Am. Math. Monthly (2011). doi:10.1007/s11263-009-0301-6 Google Scholar
  13. 13.
    A. Bronstein, M. Bronstein, R. Kimmel, Topology-invariant similarity of nonrigid shapes, Int. J. Comput. Vis. 81(3), 281–301 (2009). CrossRefGoogle Scholar
  14. 14.
    A. Bronstein, M. Bronstein, R. Kimmel, M. Mahmoudi, G. Sapiro, A Gromov–Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching (submitted). Google Scholar
  15. 15.
    A. Bronstein, M. Bronstein, A. Bruckstein, R. Kimmel, Partial similarity of objects, or how to compare a centaur to a horse, Int. J. Comput. Vis. 84(2), 163–183 (2009). CrossRefGoogle Scholar
  16. 16.
    A. Bronstein, M. Bronstein, R. Kimmel, Three-dimensional face recognition, Int. J. Comput. Vis. 64(1), 5–30 (2005). CrossRefGoogle Scholar
  17. 17.
    A. Bronstein, M. Bronstein, R. Kimmel, Efficient computation of isometry-invariant distances between surfaces, SIAM J. Sci. Comput. 28(5), 1812–1836 (2006). MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    A.M. Bronstein, M.M. Bronstein, R. Kimmel, Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching, Proc. Natl. Acad. Sci. USA 103(5), 1168–1172 (2006). MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    A. Bronstein, M. Bronstein, R. Kimmel, Calculus of nonrigid surfaces for geometry and texture manipulation, IEEE Trans. Vis. Comput. Graph. 13(5), 902–913 (2007). Google Scholar
  20. 20.
    A. Bronstein, M. Bronstein, R. Kimmel, Expression-invariant representations of faces, IEEE Trans. Pattern Anal. Mach. Intell. 16(1), 1042–1053 (2007). MathSciNetGoogle Scholar
  21. 21.
    A. Bronstein, M. Bronstein, R. Kimmel, On isometric embedding of facial surfaces into S 3, in Scale Space (Springer, Berlin, 2004). Google Scholar
  22. 22.
    D. Burago, Y. Burago, S. Ivanov, A Course in Metric Geometry. AMS Graduate Studies in Math., vol. 33 (American Mathematical Society, Providence, 2001). MATHGoogle Scholar
  23. 23.
    B. Bustos, D.A. Keim, D. Saupe, T. Schreck, D.V. Vranić, Feature-based similarity search in 3D object databases, ACM Comput. Surv. 37(4), 345–387 (2005). CrossRefGoogle Scholar
  24. 24.
    G. Carlsson, F. Mémoli, Characterization, stability and convergence of hierarchical clustering methods, J. Mach. Learn. Res. 11(Apr), 1425–1470 (2010). MathSciNetGoogle Scholar
  25. 25.
    T.K. Carne, The geometry of shape spaces, Proc. Lond. Math. Soc. (3) 61(2), 407–432 (1990). MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    I. Chavel, Riemannian Geometry: A Modern Introduction (Cambridge University Press, Cambridge, 1997). Google Scholar
  27. 27.
    F. Chazal, D. Cohen-Steiner, L. Guibas, F. Mémoli, S. Oudot, Gromov–Hausdorff stable signatures for shapes using persistence, in Proc. of SGP (2009). Google Scholar
  28. 28.
    G.E. Christensen, R.D. Rabbitt, M.I. Miller, 3D brain mapping using a deformable neuroanatomy, Phys. Med. Biol. 39(3), 609–618 (1994). CrossRefGoogle Scholar
  29. 29.
    G.E. Christensen, R.D. Rabbitt, M.I. Miller, Deformable templates using large deformation kinematics, IEEE Trans. Image Process. 5(10), 1435–1447 (1996). CrossRefGoogle Scholar
  30. 30.
    U. Clarenz, M. Rumpf, A. Telea, Robust feature detection and local classification for surfaces based on moment analysis, IEEE Trans. Vis. Comput. Graph. 10(5), 516–524 (2004). CrossRefGoogle Scholar
  31. 31.
    S.D. Cohen, L.J. Guibas, The earth mover’s distance under transformation sets, in ICCV (2) (1999), pp. 1076–1083. Google Scholar
  32. 32.
    T.F. Cox, M.A.A. Cox, Multidimensional Scaling. Monographs on Statistics and Applied Probability, vol. 59 (Chapman & Hall, London, 1994). MATHGoogle Scholar
  33. 33.
    M. d’Amico, P. Frosini, C. Landi, Natural pseudo-distance and optimal matching between reduced size functions. Technical report 66, DISMI, Univ. degli Studi di Modena e Reggio Emilia, Italy (2005). Google Scholar
  34. 34.
    M. d’Amico, P. Frosini, C. Landi, Using matching distance in size theory: a survey, Int. J. Imaging Syst. Technol. 16(5), 154–161 (2006). CrossRefGoogle Scholar
  35. 35.
    D.B. Rusch, A.L. Halpern, G. Sutton, K.B. Heidelberg, S. Williamson, et al., The sorcerer ii global ocean sampling expedition: Northwest Atlantic through Eastern Tropical Pacific, PLoS Biol. 5(3) (2007) cover. CrossRefGoogle Scholar
  36. 36.
    R.M. Dudley, Real Analysis and Probability. Cambridge Studies in Advanced Mathematics, vol. 74 (Cambridge University Press, Cambridge, 2002). Revised reprint of the 1989 original. MATHCrossRefGoogle Scholar
  37. 37.
    A. Elad (Elbaz), R. Kimmel, On bending invariant signatures for surfaces, IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1285–1295 (2003). CrossRefGoogle Scholar
  38. 38.
    P. Frosini, A distance for similarity classes of submanifolds of Euclidean space, Bull. Aust. Math. Soc. 42(3), 407–416 (1990). MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    P. Frosini, Omotopie e invarianti metrici per sottovarieta di spazi euclidei (teoria della taglia). PhD thesis, University of Florence, Italy (1990). Google Scholar
  40. 40.
    P. Frosini, M. Mulazzani, Size homotopy groups for computation of natural size distances, Bull. Belg. Math. Soc. Simon Stevin 6(3), 455–464 (1999). MathSciNetMATHGoogle Scholar
  41. 41.
    W. Gangbo, R.J. McCann, Shape recognition via Wasserstein distance, Q. Appl. Math. 58(4), 705–737 (2000). MathSciNetMATHGoogle Scholar
  42. 42.
    N. Gelfand, N.J. Mitra, L. Guibas, H. Pottmann, Robust global registration, in SGP ’05: Proceedings of the Third Eurographics Symposium on Geometry Processing (2005), pp. 197–206. Google Scholar
  43. 43.
    N. Giorgetti, Glpkmex: A matlab mex interface for the glpk library. http://www.dii.unisi.it/cohes/tools/mex/downloads/glpkmex/index.html.
  44. 44.
    C.R. Givens, R.M. Shortt, A class of Wasserstein metrics for probability distributions, Mich. Math. J. 31(2), 231–240 (1984). MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    J. Glaunès, M. Vaillant, M.I. Miller, Landmark matching via large deformation diffeomorphisms on the sphere, J. Math. Imaging Vis. 20(1–2), 179–200 (2004). CrossRefGoogle Scholar
  46. 46.
    A. Gray, Tubes. Progress in Mathematics, vol. 221, 2nd edn. (Birkhäuser, Basel, 2004). With a preface by Vicente Miquel. Google Scholar
  47. 47.
    U. Grenander, Pattern Synthesis. Lectures in Pattern Theory, vol. 1. Applied Mathematical Sciences, vol. 18 (Springer, New York, 1976). Google Scholar
  48. 48.
    U. Grenander, General pattern theory. Oxford Mathematical Monographs (Clarendon Press, New York, 1993). A Mathematical Study of Regular Structures, Oxford Science Publications. Google Scholar
  49. 49.
    U. Grenander, M.I. Miller, Computational anatomy: an emerging discipline, Q. Appl. Math. LVI(4), 617–694 (1998). MathSciNetGoogle Scholar
  50. 50.
    A. Greven, P. Pfaffelhuber, A. Winter, Convergence in distribution of random metric measure spaces (Λ-coalescent measure trees), Probab. Theory Relat. Fields 145(1–2), 285–322 (2009). MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    C. Grigorescu, N. Petkov, Distance sets for shape filters and shape recognition, IEEE Trans. Image Process. 12(10), 1274–1286 (2003). MathSciNetCrossRefGoogle Scholar
  52. 52.
    M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics, vol. 152 (Birkhäuser, Boston, 1999). MATHGoogle Scholar
  53. 53.
    A.B. Hamza, H. Krim, Geodesic object representation and recognition, in Lecture Notes in Computer Science, vol. 2886 (Springer, Berlin, 2003), pp. 378–387. Google Scholar
  54. 54.
    M. Hilaga, Y. Shinagawa, T. Kohmura, T.L. Kunii, Topology matching for fully automatic similarity estimation of 3D shapes, in SIGGRAPH ’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (ACM, New York, 2001), pp. 203–212. CrossRefGoogle Scholar
  55. 55.
    J.R. Hoffman, R.P.S. Mahler, Multitarget miss distance via optimal assignment, IEEE Trans. Syst. Man Cybern., Part A 34(3), 327–336 (2004). CrossRefGoogle Scholar
  56. 56.
    L. Holm, C. Sander, Protein structure comparison by alignment of distance matrices, J. Mol. Biol. 233(1), 123–138 (1993). CrossRefGoogle Scholar
  57. 57.
    D.P. Huttenlocher, G.A. Klanderman, W.J. Rucklidge, Comparing images using the Hausdorff distance, IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993). CrossRefGoogle Scholar
  58. 58.
    M. Jin, J. Kim, F. Luo, X. Gu, Discrete surface Ricci flow, IEEE Trans. Vis. Comput. Graph. 14(5), 1030–1043 (2008). CrossRefGoogle Scholar
  59. 59.
    M. Jin, W. Zeng, F. Luo, X. Gu, Computing Teichmüller shape space, IEEE Trans. Vis. Comput. Graph. 15(3), 504–517 (2008). Google Scholar
  60. 60.
    A. Johnson, Spin-images: a representation for 3D surface matching. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, August 1997. Google Scholar
  61. 61.
    N.J. Kalton, M.I. Ostrovskii, Distances between Banach spaces, Forum Math. 11(1), 17–48 (1999). MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    G. Kastenmüller, H.P. Kriegel, T. Seidl, Similarity search in 3D protein databases, in Proc. GCB (1998). Google Scholar
  63. 63.
    D.G. Kendall, Shape manifolds, procrustean metrics, and complex projective spaces, Bull. Lond. Math. Soc. 16(2), 81–121 (1984). MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories. de Gruyter Expositions in Mathematics, vol. 29 (Walter de Gruyter & Co., Berlin, 2000). MATHGoogle Scholar
  65. 65.
    O. Klein, R.C. Veltkamp, Approximation algorithms for computing the earth mover’s distance under transformations, in ISAAC (2005), pp. 1019–1028. Google Scholar
  66. 66.
    R. Kolodny, N. Linial, Approximate protein structural alignment in polynomial time, Proc. Natl. Acad. Sci. USA 101, 12201–12206 (2004). CrossRefGoogle Scholar
  67. 67.
    W.A. Koppensteiner, P. Lackner, M. Wiederstein, M.J. Sippl, Characterization of novel proteins based on known protein structures, J. Mol. Biol. 296(4), 1139–1152 (2000). CrossRefGoogle Scholar
  68. 68.
    H.L. Le, D.G. Kendall, The Riemannian structure of Euclidean shape spaces: a novel environment for statistics, Ann. Stat. 21(3), 1225–1271 (1993). MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    M. Leordeanu, M. Hebert, A spectral technique for correspondence problems using pairwise constraints, in International Conference of Computer Vision (ICCV), October, vol. 2 (2005), pp. 1482–1489. Google Scholar
  70. 70.
    H. Ling, D.W. Jacobs, Using the inner-distance for classification of articulated shapes, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2 (2005), pp. 719–726. CrossRefGoogle Scholar
  71. 71.
    J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB, in Proceedings of the CACSD Conference, Taipei, Taiwan (2004). Google Scholar
  72. 72.
    L. Lovász, M.D. Plummer, Matching Theory. North-Holland Mathematics Studies, vol. 121, Annals of Discrete Mathematics, vol. 29 (North-Holland Publishing Co., Amsterdam, 1986). MATHGoogle Scholar
  73. 73.
    D.G. Luenberger, Linear and Nonlinear Programming, 2nd edn. (Kluwer Academic, Boston, 2003). MATHGoogle Scholar
  74. 74.
    S. Manay, D. Cremers, B.W. Hong, A.J. Yezzi, S. Soatto, Integral invariants for shape matching, IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1602–1618 (2006). CrossRefGoogle Scholar
  75. 75.
    F. Mémoli, On the use of Gromov-Hausdorff distances for shape comparison, in Proceedings of Point Based Graphics, Prague, Czech Republic (2007). Google Scholar
  76. 76.
    F. Mémoli, Gromov–Hausdorff distances in Euclidean spaces, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, June (2008), pp. 1–8. CrossRefGoogle Scholar
  77. 77.
    F. Mémoli, Spectral Gromov–Wasserstein distances for shape matching, in Workshop on Non-rigid Shape Analysis and Deformable Image Alignment (ICCV Workshop, NORDIA’09), October 2009. Google Scholar
  78. 78.
    F. Mémoli, Estimation of distance functions and geodesics and its use for shape comparison and alignment: theoretical and computational results. PhD thesis, Electrical and Computer Engineering Department, University of Minnesota, May 2005. Google Scholar
  79. 79.
    F. Mémoli, Spectral Gromov–Wasserstein distances and related approaches, Appl. Comput. Harmon. Anal. (2010). doi:10.1016/j.acha.2010.09.005. Google Scholar
  80. 80.
    F. Mémoli, G. Sapiro, Comparing point clouds, in SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (2004), pp. 32–40. CrossRefGoogle Scholar
  81. 81.
    F. Mémoli, G. Sapiro, A theoretical and computational framework for isometry invariant recognition of point cloud data, Found. Comput. Math. 5(3), 313–347 (2005). MathSciNetMATHCrossRefGoogle Scholar
  82. 82.
    P.W. Michor, D. Mumford, Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc. 8(1), 1–48 (2004). MathSciNetGoogle Scholar
  83. 83.
    M.I. Miller, L. Younes, Group actions, homeomorphisms, and matching: a general framework, Int. J. Comput. Vis. 41(1–2), 61–84 (2001). MATHCrossRefGoogle Scholar
  84. 84.
    M.I. Miller, A. Trouvé, L. Younes, On the metrics and Euler-Lagrange equations of computational anatomy, Annu. Rev. Biomed. Eng. 4(1), 375–405 (2002). CrossRefGoogle Scholar
  85. 85.
    D. Mumford, Mathematical theories of shape: do they model perception? Proc. SPIE 1570, 2–10 (1991). CrossRefGoogle Scholar
  86. 86.
    R. Osada, T. Funkhouser, B. Chazelle, D. Dobkin, Shape distributions, ACM Trans. Graph. 21(4), 807–832 (2002). CrossRefGoogle Scholar
  87. 87.
    M. Ovsjanikov, Q. Mérigot, F. Mémoli, L. Guibas, in One Point Isometric Matching with the Heat Kernel, Lyon, France (2010), pp. 1555–1564. Google Scholar
  88. 88.
    C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity (Dover, Mineola, 1998). Corrected reprint of the 1982 original. MATHGoogle Scholar
  89. 89.
    P.M. Pardalos, H. Wolkowicz (eds.), Quadratic Assignment and Related Problems. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 16 (American Mathematical Society, Providence, 1994). Papers from the workshop held at Rutgers University, New Brunswick, New Jersey, May 20–21, 1993. MATHGoogle Scholar
  90. 90.
    Protein Data Bank. RCSB, Protein Data Bank. Rutgers University and UCSD. http://www.rcsb.org/pdb/home/home.do.
  91. 91.
    H. Pottmann, J. Wallner, Q. Huang, Y.-L. Yang, Integral invariants for robust geometry processing, Comput. Aided Geom. Des. 26(1), 37–60 (2008). MathSciNetCrossRefGoogle Scholar
  92. 92.
    D. Raviv, A. Bronstein, M. Bronstein, R. Kimmel, Symmetries of non-rigid shapes, in IEEE 11th International Conference on Computer Vision, October 2007 (2007), pp. 1–7. CrossRefGoogle Scholar
  93. 93.
    G. Reeb, Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une fonction numérique, C. R. Math. Acad. Sci. Paris 222, 847–849 (1946). MathSciNetMATHGoogle Scholar
  94. 94.
    M. Reuter, F.E. Wolter, N. Peinecke, Laplace-spectra as fingerprints for shape matching, in SPM ’05: Proceedings of the 2005 ACM Symposium on Solid and Physical Modeling, New York, NY, USA (ACM Press, New York, 2005), pp. 101–106. CrossRefGoogle Scholar
  95. 95.
    M. Riser, Protein docking using local shape distributions. Master’s thesis, ETH Zürich, Switzerland, September 2004. Google Scholar
  96. 96.
    Y. Rubner, C. Tomasi, L. Guibas, The Earth mover’s distance as a metric for image retrieval, Int. J. Comput. Vis. 40(2), 99–121 (2000). MATHCrossRefGoogle Scholar
  97. 97.
    M. Ruggeri, D. Saupe, Isometry-invariant matching of point set surfaces, in Proceedings Eurographics 2008 Workshop on 3D Object Retrieval (2008). Google Scholar
  98. 98.
    M. Rumpf, B. Wirth, An elasticity-based covariance analysis of shapes, Int. J. Comput. Vis. 92(3), 281–295 (2009). MathSciNetCrossRefGoogle Scholar
  99. 99.
    S. Rusinkiewicz, M. Levoy, Efficient variants of the icp algorithm, in 3DIM (IEEE Comput. Soc., Los Alamitos, 2001), pp. 145–152. Google Scholar
  100. 100.
    R.M. Rustamov, Laplace–Beltrami eigenfunctions for deformation invariant shape representation, in Symposium on Geometry Processing (2007), pp. 225–233. Google Scholar
  101. 101.
    T. Sakai, Riemannian geometry. Translations of Mathematical Monographs, vol. 149 (American Mathematical Society, Providence, 1996). MATHGoogle Scholar
  102. 102.
    Y. Shi, P.M. Thompson, G.I. de Zubicaray, S.E. Rose, Z. Tu, I. Dinov, A.W. Toga, Direct mapping of hippocampal surfaces with intrinsic shape context, NeuroImage 37(3), 792–807 (2007). CrossRefGoogle Scholar
  103. 103.
    C.G. Small, The Statistical Theory of Shape. Springer Series in Statistics (Springer, New York, 1996). MATHGoogle Scholar
  104. 104.
    V. Strassen, The existence of probability measures with given marginals, Ann. Math. Stat. 36, 423–439 (1965). MathSciNetMATHCrossRefGoogle Scholar
  105. 105.
    K.T. Sturm, On the geometry of metric measure spaces. I, Acta Math. 196(1), 65–131 (2006). MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    R.W. Sumner, J. Popovic, Mesh data from deformation transfer for triangle meshes. http://people.csail.mit.edu/sumner/research/deftransfer/data.html.
  107. 107.
    D. Thompson, On Growth and Form (Cambridge University Press, Cambridge, 1917). Google Scholar
  108. 108.
    A. Trouvé, Diffeomorphisms groups and pattern matching in image analysis, Int. J. Comput. Vis. 28(3), 213–221 (1998). CrossRefGoogle Scholar
  109. 109.
    R.C. Veltkamp, Shape matching: similarity measures and algorithms, in Shape Modeling International, doi:10.1109/SMA.2001.923389.
  110. 110.
    R.C. Veltkamp, L.J. Latecki, Properties and performances of shape similarity measures, in Content-Based Retrieval, ed. by T. Crawford, R.C. Veltkamp. Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, vol. 06171 (2006). Google Scholar
  111. 111.
    C. Villani, Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58 (American Mathematical Society, Providence, 2003). MATHGoogle Scholar
  112. 112.
    L. Younes, Shapes and Diffeomorphisms (Springer, Berlin, 2010). MATHCrossRefGoogle Scholar
  113. 113.
    L. Younes, Computable elastic distances between shapes, SIAM J. Appl. Math. 58, 565–586 (1995). MathSciNetCrossRefGoogle Scholar
  114. 114.
    L. Younes, Optimal matching between shapes via elastic deformations, Image Vis. Comput. 17(5–6), 381–389 (1999). CrossRefGoogle Scholar
  115. 115.
    L. Younes, P.W. Michor, J. Shah, D. Mumford, A metric on shape space with explicit geodesics, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19(1), 25–57 (2008). MathSciNetMATHCrossRefGoogle Scholar
  116. 116.
    W. Zeng, X. Yin, Y. Zeng, Y. Lai, X. Gu, D. Samaras, 3D face matching and registration based on hyperbolic Ricci flow, in CVPR Workshop on 3D Face Processing, Anchorage, Alaska, June 2008 (2008), pp. 1–8. Google Scholar
  117. 117.
    W. Zeng, Y. Zeng, Y. Wang, X. Yin, X. Gu, D. Samaras, 3D non-rigid surface matching and registration based on holomorphic differentials, in The 10th European Conference on Computer Vision (ECCV), Marseille, France, October 2008 Google Scholar
  118. 118.
    Z. Zhang, Iterative point matching for registration of free-form curves and surfaces, Int. J. Comput. Vis. 13(2), 119–152 (1994). CrossRefGoogle Scholar

Copyright information

© SFoCM 2011

Authors and Affiliations

  1. 1.Department of MathematicsStanford UniversityCaliforniaUSA

Personalised recommendations