Foundations of Computational Mathematics

, Volume 11, Issue 1, pp 1–63 | Cite as

Accuracy and Stability of Computing High-order Derivatives of Analytic Functions by Cauchy Integrals

  • Folkmar Bornemann


High-order derivatives of analytic functions are expressible as Cauchy integrals over circular contours, which can very effectively be approximated, e.g., by trapezoidal sums. Whereas analytically each radius r up to the radius of convergence is equal, numerical stability strongly depends on r. We give a comprehensive study of this effect; in particular, we show that there is a unique radius that minimizes the loss of accuracy caused by round-off errors. For large classes of functions, though not for all, this radius actually gives about full accuracy; a remarkable fact that we explain by the theory of Hardy spaces, by the Wiman–Valiron and Levin–Pfluger theory of entire functions, and by the saddle-point method of asymptotic analysis. Many examples and nontrivial applications are discussed in detail.


Numerical differentiation Accuracy Stability Analytic functions Cauchy integral Optimal radius Hardy spaces Entire functions of perfectly and completely regular growth 

Mathematics Subject Classification (2000)

65E05 65D25 65G56 30D15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1965). Google Scholar
  2. G.E. Andrews, R. Askey, R. Roy, Special Functions (Cambridge University Press, Cambridge, 1999). zbMATHGoogle Scholar
  3. J. Baik, P. Deift, E. Rains, A Fredholm determinant identity and the convergence of moments for random Young tableaux, Commun. Math. Phys. 223, 627–672 (2001). zbMATHCrossRefMathSciNetGoogle Scholar
  4. E.L. Basor, H. Widom, On a Toeplitz determinant identity of Borodin and Okounkov, Integr. Equ. Oper. Theory 37, 397–401 (2000). zbMATHCrossRefMathSciNetGoogle Scholar
  5. A.V. Batyrev, On the best approximation of analytic functions by polynomials, Dokl. Akad. Nauk SSSR (N.S.) 76, 173–175 (1951). zbMATHMathSciNetGoogle Scholar
  6. O. Blumenthal, Über ganze transzendente Funktionen, Deutsche Math.-Ver. 16, 97–109 (1907). Google Scholar
  7. F. Bornemann, On the numerical evaluation of distributions in random matrix theory: a review, Markov Process. Relat. Fields (2009, to appear). arXiv:0904.1581v4.
  8. F. Bornemann, On the numerical evaluation of Fredholm determinants, Math. Comput. 79, 871–915 (2010). zbMATHMathSciNetGoogle Scholar
  9. A. Borodin, A. Okounkov, A Fredholm determinant formula for Toeplitz determinants, Integr. Equ. Oper. Theory 373, 386–396 (2000). CrossRefMathSciNetGoogle Scholar
  10. A. Böttcher, On the determinant formulas by Borodin, Okounkov, Baik, Deift and Rains, in Toeplitz Matrices and Singular Integral Equations, Pobershau, 2001. Oper. Theory Adv. Appl., vol. 135 (Birkhäuser, Basel, 2002), pp. 91–99. Google Scholar
  11. P.J. Davis, On the numerical integration of periodic analytic functions, in On Numerical Approximation, ed. by R.E. Langer. Proceedings of a Symposium, Madison, April 21–23, 1958 (The University of Wisconsin Press, Madison, 1959), pp. 45–59. Google Scholar
  12. P.J. Davis, P. Rabinowitz, Methods of Numerical Integration, 2nd edn. (Academic Press, San Diego, 1984). zbMATHGoogle Scholar
  13. N.G. de Bruijn, Asymptotic Methods in Analysis, 3rd edn. (Dover, New York, 1981). zbMATHGoogle Scholar
  14. P. Deuflhard, A. Hohmann, Numerical Analysis in Modern Scientific Computing, 2nd edn. (Springer, New York, 2003). zbMATHGoogle Scholar
  15. P. Dienes, The Taylor Series (Oxford University Press, Oxford, 1931). Google Scholar
  16. L. Erdős, J. Ramírez, B. Schlein, T. Tao, V. Vu, H.-T. Yau, Bulk universality for Wigner hermitian matrices with subexponential decay, Math. Res. Lett. (2010, to appear). arXiv:0906.4400v1.
  17. G. Faber, Über das Anwachsen analytischer Funktionen, Math. Ann. 63, 549–551 (1907). zbMATHCrossRefMathSciNetGoogle Scholar
  18. P. Flajolet, R. Sedgewick, Analytic Combinatorics (Cambridge University Press, Cambridge, 2009). zbMATHGoogle Scholar
  19. B. Fornberg, Algorithm 579: CPSC: Complex power series coefficients, ACM Trans. Math. Softw. 7, 542–547 (1981a). CrossRefMathSciNetGoogle Scholar
  20. B. Fornberg, Numerical differentiation of analytic functions, ACM Trans. Math. Softw. 7, 512–526 (1981b). zbMATHCrossRefMathSciNetGoogle Scholar
  21. J.B. Garnett, Bounded Analytic Functions (Academic Press, San Diego, 1981). zbMATHGoogle Scholar
  22. W. Gautschi, Numerical Analysis (Birkhäuser, Boston, 1997). zbMATHGoogle Scholar
  23. F. Gensun, L. Xuehua, Optimal quadrature problem on Hardy-Sobolev classes, J. Complex. 21, 722–739 (2005). zbMATHCrossRefMathSciNetGoogle Scholar
  24. I.M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53, 29–52 (1990). CrossRefMathSciNetGoogle Scholar
  25. A. Gil, J. Segura, N.M. Temme, Numerical Methods for Special Functions (SIAM, Philadelphia, 2007). zbMATHGoogle Scholar
  26. A. Giroux, Approximation of entire functions over bounded domains, J. Approx. Theory 28, 45–53 (1980). zbMATHCrossRefMathSciNetGoogle Scholar
  27. A.A. Gol’dberg, B.Y. Levin, I.V. Ostrovskii, Entire and meromorphic functions, in Complex Analysis, I. Encyclopaedia Math. Sci., vol. 85 (Springer, Berlin, 1997), pp. 1–193. Google Scholar
  28. J. Hadamard, Sur les fonctions entières, S.M.F. Bull 24, 186–187 (1896). zbMATHMathSciNetGoogle Scholar
  29. G.H. Hardy, The mean value of the modulus of an analytic function, Proc. Lond. Math. Soc. 14, 269–277 (1915). Google Scholar
  30. P. Hartman, Ordinary Differential Equations, 2nd edn. (Birkhäuser, Boston, 1982). zbMATHGoogle Scholar
  31. W.K. Hayman, A generalisation of Stirling’s formula, J. Reine Angew. Math. 196, 67–95 (1956). zbMATHMathSciNetGoogle Scholar
  32. W.K. Hayman, The local growth of power series: a survey of the Wiman–Valiron method, Can. Math. Bull. 17, 317–358 (1974). zbMATHCrossRefMathSciNetGoogle Scholar
  33. P. Henrici, Applied and Computational Complex Analysis, vol. 3 (Wiley, New York, 1986). zbMATHGoogle Scholar
  34. N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edn. (SIAM, Philadelphia, 2002). zbMATHGoogle Scholar
  35. P.D. Lax, Functional Analysis (Wiley, New York, 2002). zbMATHGoogle Scholar
  36. B.J. Levin, Distribution of Zeros of Entire Functions (Am. Math. Soc., Providence, 1980), revised ed. Google Scholar
  37. Y.L. Luke, The Special Functions and Their Approximations, vol. I (Academic Press, San Diego, 1969). zbMATHGoogle Scholar
  38. J.N. Lyness, Numerical algorithms based on the theory of complex variables, in Proceedings of the 1967 22nd National Conference (1967), pp. 125–133. Google Scholar
  39. J.N. Lyness, G. Sande, Algorithm 413: ENTCAF and ENTCRE: Evaluation of normalized Taylor coefficients of an analytic function, Commun. ACM 14, 669–675 (1971). CrossRefGoogle Scholar
  40. A.I. Markushevich, Theory of Functions of a Complex Variable. Vol. I, II, III (Chelsea Publ., New York, 1977). Google Scholar
  41. M.L. Mehta, Random Matrices, 3rd edn. (Elsevier, Amsterdam, 2004). zbMATHGoogle Scholar
  42. G. Miel, R. Mooney, On the condition number of Lagrangian numerical differentiation, Appl. Math. Comput. 16, 241–252 (1985). zbMATHCrossRefMathSciNetGoogle Scholar
  43. P.D. Miller, Applied Asymptotic Analysis (Am. Math. Soc., Providence, 2006). zbMATHGoogle Scholar
  44. J. Müller, Accelerated polynomial approximation of finite order entire functions by growth reduction, Math. Comput. 66, 743–761 (1997). zbMATHCrossRefGoogle Scholar
  45. A.M. Odlyzko, Asymptotic enumeration methods, in Handbook of Combinatorics, vol. 2 (Elsevier, Amsterdam, 1995), pp. 1063–1229. Google Scholar
  46. A.M. Odlyzko, Exact distribution of lengths of longest increasing subsequences in permutations, (2000).
  47. A.M. Odlyzko, E.M. Rains, On longest increasing subsequences in random permutations, in Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis, Philadelphia, 1998. Contemp. Math., vol. 251 (Am. Math. Soc., Providence, 2000), pp. 439–451. Google Scholar
  48. G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis. Band I & II, 3rd edn. (Springer, Berlin, 1964). Google Scholar
  49. E.F. Shchuchinskaya, Exceptional values in Wiman inequalities for entire functions of finite order, Sov. Math. (26), 98–100 (1982). Google Scholar
  50. A.E. Taylor, New proofs of some theorems of Hardy by Banach space methods, Math. Mag. 23, 115–124 (1950). zbMATHCrossRefMathSciNetGoogle Scholar
  51. L.N. Trefethen, Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50, 67–87 (2008). zbMATHCrossRefMathSciNetGoogle Scholar
  52. G. Valiron, Les théorèmes généraux de M. Borel dans la théorie des fonctions entières, Ann. Écol. Norm 37, 219–253 (1920). MathSciNetGoogle Scholar
  53. G. Valiron, Sur les fonctions entières vérifiant une classe d’équations différentielles, S.M.F. Bull 51, 33–45 (1923). zbMATHMathSciNetGoogle Scholar
  54. G. Valiron, Lectures on the General Theory of Integral Functions (Chelsea Publ, New York, 1949). Google Scholar
  55. J.L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, 4th edn. (Am. Math. Soc., Providence, 1965). zbMATHGoogle Scholar
  56. G.N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, Cambridge, 1944). zbMATHGoogle Scholar
  57. H.S. Wilf, Generatingfunctionology, 3rd edn. (A K Peters, Wellesley, 2006). zbMATHGoogle Scholar
  58. A. Wiman, Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem größten Gliede der zugehörigen Taylorschen Reihe, Acta Math. 37, 305–326 (1914). CrossRefMathSciNetGoogle Scholar
  59. A. Wiman, Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem größten Betrage bei gegebenem Argumente der Funktion, Acta Math. 41, 1–28 (1916). zbMATHCrossRefMathSciNetGoogle Scholar
  60. R. Wong, Asymptotic Approximations of Integrals (Academic Press, San Diego, 1989). zbMATHGoogle Scholar
  61. A. Zygmund, Trigonometric Series: Vols. I, II, 2nd edn. (Cambridge University Press, Cambridge, 1968). Google Scholar

Copyright information

© SFoCM 2010

Authors and Affiliations

  1. 1.Zentrum Mathematik—M3Technische Universität MünchenMünchenGermany

Personalised recommendations