Foundations of Computational Mathematics

, Volume 10, Issue 5, pp 569–613 | Cite as

Scattering in Flatland: Efficient Representations via Wave Atoms



This paper presents a numerical compression strategy for the boundary integral equation of acoustic scattering in two dimensions. These equations have oscillatory kernels that we represent in a basis of wave atoms, and compress by thresholding the small coefficients to zero.

This phenomenon was perhaps first observed in 1993 by Bradie, Coifman, and Grossman, in the context of local Fourier bases (Bradie et al. in Appl. Comput. Harmon. Anal. 1:94–99, 1993). Their results have since then been extended in various ways. The purpose of this paper is to bridge a theoretical gap and prove that a well-chosen fixed expansion, the non-standard wave atom form, provides a compression of the acoustic single- and double-layer potentials with wave number k as O(k)-by-O(k) matrices with C ε δ k 1+δ non-negligible entries, with δ>0 arbitrarily small, and ε the desired accuracy. The argument assumes smooth, separated, and not necessarily convex scatterers in two dimensions. The essential features of wave atoms that allow this result to be written as a theorem are a sharp time-frequency localization that wavelet packets do not obey, and a parabolic scaling (wavelength of the wave packet) ∼ (essential diameter)2. Numerical experiments support the estimate and show that this wave atom representation may be of interest for applications where the same scattering problem needs to be solved for many boundary conditions, for example, the computation of radar cross sections.


Fast algorithm Wave propagation Boundary integral equation Computational harmonic analysis 

Mathematics Subject Classification (2000)

65R20 65T99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Abbott, Flatland: A Romance in Many Dimensions, 3rd edn. (Dover, New York, 1992) (1884). Google Scholar
  2. 2.
    J.P. Antoine, R. Murenzi, Two-dimensional directional wavelets and the scale-angle representation, Signal Process. 52, 259–281 (1996). MATHCrossRefGoogle Scholar
  3. 3.
    A. Averbuch, E. Braverman, R. Coifman, M. Israeli, A. Sidi, Efficient computation of oscillatory integrals via adaptive multiscale local Fourier bases, Appl. Comput. Harmon. Anal. 9(1), 19–53 (2000). MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    G. Beylkin, R. Coifman, V. Rokhlin, Fast wavelet transforms and numerical algorithms. I, Commun. Pure Appl. Math. 44(2), 141–183 (1991). MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    B. Bradie, R. Coifman, A. Grossmann, Fast numerical computations of oscillatory integrals related to acoustic scattering, Appl. Comput. Harmon. Anal. 1, 94–99 (1993). MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    E.J. Candès, D.L. Donoho, New tight frames of curvelets and optimal representations of objects with piecewise-C 2 singularities, Commun. Pure Appl. Math. 57, 219–266 (2004). MATHCrossRefGoogle Scholar
  7. 7.
    H. Cheng, W.Y. Crutchfield, Z. Gimbutas, L.F. Greengard, J.F. Ethridge, J. Huang, V. Rokhlin, N. Yarvin, J. Zhao, A wideband fast multipole method for the Helmholtz equation in three dimensions, J. Comput. Phys. 216, 300–325 (2006). MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. Córdoba, C. Fefferman, Wave packets and Fourier integral operators, Commun. PDE 3(11), 979–1005 (1978). MATHCrossRefGoogle Scholar
  9. 9.
    L. Demanet, L. Ying, Curvelets and wave atoms for mirror-extended images, in Proc. SPIE Wavelets XII Conf., 2007. Google Scholar
  10. 10.
    L. Demanet, L. Ying, Wave atoms and sparsity of oscillatory patterns, Appl. Comput. Harmon. Anal. 23(3), 368–387 (2007). MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    H. Deng, H. Ling, Fast solution of electromagnetic integral equations using adaptive wavelet packet transform, IEEE Trans. Antennas Propag. 47(4), 674–682 (1999). MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    H. Deng, H. Ling, On a class of predefined wavelet packet bases for efficient representation of electromagnetic integral equations, IEEE Trans. Antennas Propag. 47(12), 1772–1779 (1999). MathSciNetGoogle Scholar
  13. 13.
    B. Engquist, L. Ying, Fast directional multilevel algorithms for oscillatory kernels, SIAM J. Sci. Comput. 29(4), 1710–1737 (2007). MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    B. Engquist, L. Ying, Fast directional computation for the high frequency Helmholtz kernel in two dimensions, Commun. Math. Sci. 7(2), 327–345 (2009). MATHMathSciNetGoogle Scholar
  15. 15.
    W.L. Golik, Wavelet packets for fast solution of electromagnetic integral equations, IEEE Trans. Antennas Propag. 46(5), 618–624 (1998). CrossRefGoogle Scholar
  16. 16.
    D. Huybrechs, S. Vandewalle, A two-dimensional wavelet-packet transform for matrix compression of integral equations with highly oscillatory kernel, J. Comput. Appl. Math. 197(1), 218–232 (2006). MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    S. Kapur, V. Rokhlin, High-order corrected trapezoidal quadrature rules for singular functions, SIAM J. Numer. Anal. 34, 1331–1356 (1997). MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    R. Kress, Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering, Q. J. Mech. Appl. Math. 38(2), 323–341 (1985). MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    S. Mallat, A Wavelet Tour of Signal Processing, 2nd edn. (Academic Press, Orlando-San Diego, 1999). MATHGoogle Scholar
  20. 20.
    F.G. Meyer, R.R. Coifman, Brushlets: a tool for directional image analysis and image compression, Appl. Comput. Harmon. Anal. 4, 147–187 (1997). MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    V. Rokhlin, Rapid solution of integral equations of scattering theory in two dimensions, J. Comput. Phys. 86(2), 414–439 (1990). MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    V. Rokhlin, Diagonal forms of translation operators for the Helmholtz equation in three dimensions, Appl. Comput. Harmon. Anal. 1, 82–93 (1993). MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    L. Villemoes, Wavelet packets with uniform time-frequency localization, C. R. Math. 335(10), 793–796 (2002). MATHMathSciNetGoogle Scholar
  24. 24.
    G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd edn. (Cambridge University Press, Cambridge, 1966). MATHGoogle Scholar

Copyright information

© SFoCM 2010

Authors and Affiliations

  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of MathematicsUniversity of Texas at AustinAustinUSA

Personalised recommendations