Foundations of Computational Mathematics

, Volume 10, Issue 2, pp 221–240 | Cite as

Boundary Measures for Geometric Inference

  • Frédéric Chazal
  • David Cohen-Steiner
  • Quentin Mérigot
Article

Abstract

We study the boundary measures of compact subsets of the d-dimensional Euclidean space, which are closely related to Federer’s curvature measures. We show that they can be computed efficiently for point clouds and suggest that these measures can be used for geometric inference. The main contribution of this work is the proof of a quantitative stability theorem for boundary measures using tools of convex analysis and geometric measure theory. As a corollary we obtain a stability result for Federer’s curvature measures of a compact set, showing that they can be reliably estimated from point-cloud approximations.

Geometric inference Curvature measures Convex functions Nearest neighbors Point clouds 

Mathematics Subject Classification (2000)

52A39 51K10 49Q15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs (Oxford University Press, London, 2000). MATHGoogle Scholar
  2. 2.
    N. Amenta, S. Choi, T.K. Dey, N. Leekha, A simple algorithm for homeomorphic surface reconstruction, Int. J. Comput. Geom. Appl. 12(1–2), 125–141 (2002). MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    S. Bobkov, C. Houdré, Converse Poincaré-type inequalities for convex functions, Stat. Probab. Lett. 34, 37–42 (1997). MATHCrossRefGoogle Scholar
  4. 4.
    S. Bobkov, C. Houdré, A converse Gaussian Poincaré-type inequality for convex functions, Stat. Probab. Lett. 44, 281–290 (1999). MATHCrossRefGoogle Scholar
  5. 5.
    G. Carlsson, T. Ishkhanov, V. De Silva, A. Zomorodian, On the local behavior of spaces of natural images, Int. J. Comput. Vis. 76(1), 1–12 (2008). CrossRefGoogle Scholar
  6. 6.
    F. Chazal, D. Cohen-Steiner, A. Lieutier, A sampling theory for compacts in Euclidean space, in Proceedings of the 22th Annual Symposium on Computational Geometry (2006). Google Scholar
  7. 7.
    F. Chazal, D. Cohen-Steiner, Q. Mérigot, Stability of boundary measures (2007). arXiv:0706.2153.
  8. 8.
    F. Chazal, A. Lieutier, Stability and computation of topological invariants of solids in ℝn, Discrete Comput. Geom. 37(4), 601–617 (2007). MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Stability of persistence diagrams, Discrete Comput. Geom. 37, 103–120 (2007). MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    D. Cohen-Steiner, J. Morvan, Restricted Delaunay triangulations and normal cycle, in Proceedings of the Nineteenth Annual Symposium on Computational Geometry (2003), pp. 312–321. Google Scholar
  11. 11.
    V. de Silva, G. Carlsson, Topological estimation using witness complexes, in Proceedings of the First IEEE/Eurographics Symposium on Point-based Graphics (2004), pp. 157–166. Google Scholar
  12. 12.
    T. Dey, J. Giesen, S. Goswami, W. Zhao, Shape dimension and approximation from samples, Discrete Comput. Geom. 29(3), 419–434 (2003). MATHMathSciNetGoogle Scholar
  13. 13.
    H. Edelsbrunner, The union of balls and its dual shape, Discrete Comput. Geom. 13, 415–440 (1995). MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    H. Federer, Curvature measures, Trans. Am. Math. Soc. 93(3), 418–491 (1959). MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    F. Morgan, Geometric Measure Theory: A Beginner’s Guide (Academic Press, San Diego, 1988). MATHGoogle Scholar
  16. 16.
    P. Niyogi, S. Smale, S. Weinberger, Finding the homology of submanifolds with confidence from random samples, Discrete Comput. Geom. (2006). Google Scholar
  17. 17.
    S. Peleg, M. Werman, H. Rom, A unified approach to the change of resolution: space and gray-level, IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 739–742 (1989). CrossRefGoogle Scholar
  18. 18.
    Y. Rubner, C. Tomasi, L. Guibas, The earth mover’s distance as a metric for image retrieval, Int. J. Comput. Vis. 40(2), 99–121 (2000). MATHCrossRefGoogle Scholar
  19. 19.
    J. Steiner, Über parallele Flächen, in Monatsbericht die Akademie der Wissenschaften zu Berlin (1840), pp. 114–118. Google Scholar
  20. 20.
    C. Villani, Topics in Optimal Transportation (American Mathematical Society, Providence, 2003). MATHGoogle Scholar
  21. 21.
    H. Weyl, On the volume of tubes, Am. J. Math. 61(2), 461–472 (1939). CrossRefMathSciNetGoogle Scholar
  22. 22.
    T. Zamfirescu, On the cut locus in Alexandrov spaces and applications to convex surfaces, Pac. J. Math. 217, 375–386 (2004). MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© SFoCM 2009

Authors and Affiliations

  • Frédéric Chazal
    • 1
  • David Cohen-Steiner
    • 2
  • Quentin Mérigot
    • 2
  1. 1.GeometricaINRIA SaclayOrsayFrance
  2. 2.GeometricaINRIA Sophia-AntipolisSophia-AntipolisFrance

Personalised recommendations