Foundations of Computational Mathematics

, Volume 9, Issue 5, pp 599–609

# Real Computational Universality: The Word Problem for a Class of Groups with Infinite Presentation

• Klaus Meer
• Martin Ziegler
Article

## Abstract

The word problem for discrete groups is well known to be undecidable by a Turing Machine; more precisely, it is reducible both to and from and thus equivalent to the discrete Halting Problem. The present work introduces and studies a real extension of the word problem for a certain class of groups which are presented as quotient groups of a free group and a normal subgroup. As a main difference to discrete groups these groups may be generated by uncountably many generators with index running over certain sets of real numbers. We study the word problem for such groups within the Blum–Shub–Smale (BSS) model of real number computation. The main result establishes the word problem to be computationally equivalent to the Halting Problem for such machines. It thus gives the first non-trivial example of a problem complete, that is, computationally universal for this model.

## Keywords

Word problem for groups Computational universality Blum–Shub–Smale model Real halting problem

## Mathematics Subject Classification (2000)

20F10 68Q17 68Q10

## References

1. 1.
L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the real numbers: $$\protect\mathcal{NP}$$ -completeness, recursive functions, and universal machines, Bull. Am. Math. Soc. 21, 1–46 (1989).
2. 2.
L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation (Springer, New York, 1998). Google Scholar
3. 3.
W.W. Boone, The word problem, Proc. Natl. Acad. Sci. U.S.A. 44, 265–269 (1958).
4. 4.
M. Bourgade, Separations et transferts dans la hiérarchie polynomiale des groupes abéliens infinis, Math. Log. Q. 47, 493–502 (2001).
5. 5.
J.W. Cannon, G.R. Conner, The combinatorial structure of the Hawaiian earring group, Topology Appl. 106, 225–271 (2000).
6. 6.
F. Cucker, The arithmetical hierarchy over the reals, J. Log. Comput. 2(3), 375–395 (1992).
7. 7.
H. Derksen, E. Jeandel, P. Koiran, Quantum automata and algebraic groups, J. Symb. Comput. 39, 357–371 (2005).
8. 8.
C. Gaßner, The $$\mathcal{P}=\mathcal{DNP}$$ problem for infinite abelian groups, J. Complex. 17, 574–583 (2001).
9. 9.
J.B. Goode, Accessible telephone directories, J. Symb. Log. 59, 92–105 (1994).
10. 10.
G. Higman, B.H. Neumann, H. Neumann, Embedding theorems for groups, J. Lond. Math. Soc. 24, 247–254 (1949).
11. 11.
D.F. Holt, S. Rees, C.E. Röver, R.M. Thomas, Groups with context-free co-word problem, J. Lond. Math. Soc. 71(3), 643–657 (2005).
12. 12.
S. Lang, SL 2(ℝ) (Springer, New York, 1985). Google Scholar
13. 13.
R.C. Lyndon, P.E. Schupp, Combinatorial Group Theory (Springer, Berlin, 1977).
14. 14.
K. Meer, M. Ziegler, An explicit solution to Post’s problem over the reals, J. Complex. 24(1), 3–15 (2008).
15. 15.
C. Michaux, Ordered rings over which output sets are recursively enumerable, Proc. Am. Math. Soc. 112, 569–575 (1991).
16. 16.
C.F. Miller III, Decision problems for groups—survey and reflections, in Algorithms and Classification in Combinatorial Group Theory, ed. by G. Baumslag, C.F. Miller III. Math. Sci. Res. Inst. Publ., vol. 1 (Springer, New York, 1992), pp. 1–59. Google Scholar
17. 17.
D.E. Muller, P.E. Schupp, Groups, the theory of ends, and context-free languages, J. Comput. Syst. Sci. 26, 295–310 (1983).
18. 18.
P.S. Novikov, On the algorithmic unsolvability of the word problem in group theory. Tr. Mat. Inst. Steklov 44 (1955). Google Scholar
19. 19.
B. Poizat, Les Petits Cailloux (Aléas, Lyon, 1995).
20. 20.
M. Prunescu, A model-theoretic proof for $$\mathcal{P}\neq\mathcal{NP}$$ over all infinite abelian groups, J. Symb. Log. 67, 235–238 (2002).
21. 21.
J.J. Rotman, An Introduction to the Theory of Groups, 4th edn. (Springer, Berlin, 1995).
22. 22.
J.V. Tucker, Computability and the algebra of fields, J. Symb. Log. 45, 103–120 (1980).