Foundations of Computational Mathematics

, Volume 9, Issue 2, pp 197–219 | Cite as

Hamilton–Pontryagin Integrators on Lie Groups Part I: Introduction and Structure-Preserving Properties

Article

Abstract

In this paper, structure-preserving time-integrators for rigid body-type mechanical systems are derived from a discrete Hamilton–Pontryagin variational principle. From this principle, one can derive a novel class of variational partitioned Runge–Kutta methods on Lie groups. Included among these integrators are generalizations of symplectic Euler and Störmer–Verlet integrators from flat spaces to Lie groups. Because of their variational design, these integrators preserve a discrete momentum map (in the presence of symmetry) and a symplectic form.

In a companion paper, we perform a numerical analysis of these methods and report on numerical experiments on the rigid body and chaotic dynamics of an underwater vehicle. The numerics reveal that these variational integrators possess structure-preserving properties that methods designed to preserve momentum (using the coadjoint action of the Lie group) and energy (for example, by projection) lack.

Keywords

Variational integrators Hamilton–Pontryagin Lie group integrators 

Mathematics Subject Classification (2000)

37M15 58E30 65P10 70EXX 70HXX 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Austin, P.S. Krishnaprasad, L. Wang, Almost-Poisson integration of rigid body systems, J. Comput. Phys. 107, 105–117 (1993). MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A.I. Bobenko, Y.B. Suris, Discrete Lagrangian reduction, discrete Euler–Poincaré equations, and semi-direct products, Lett. Math. Phys. 49, 79–93 (1999). MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A.I. Bobenko, Y.B. Suris, Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top, Commun. Math. Phys. 204, 147–188 (1999). MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    N. Bou-Rabee, Hamilton–Pontryagin integrators on Lie groups, Ph.D. thesis, California Institute of Technology (2007). Google Scholar
  5. 5.
    J.R. Cardoso, F. Leite, The Moser–Veselov equation, Linear Algebra Appl. 360, 237–248 (2003). MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    H. Cendra, J.E. Marsden, S. Pekarsky, T.S. Ratiu, Variational principles for Lie–Poisson and Hamilton–Poincaré equations, Mosc. Math. J. 3, 833–867 (2003). MATHMathSciNetGoogle Scholar
  7. 7.
    K. Engø, S. Faltinsen, Numerical integration of Lie–Poisson systems while preserving coadjoint orbits and energy, SIAM J. Numer. Anal. 39, 128–145 (2001). CrossRefMathSciNetGoogle Scholar
  8. 8.
    E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration, 2nd edn. Springer Series in Computational Mathematics, vol. 31 (Springer, Berlin, 2006). MATHGoogle Scholar
  9. 9.
    D.D. Holm, J.E. Marsden, T.S. Ratiu, The Euler–Poincaré equations and semidirect products with applications to continuum theories, Adv. Math. 137, 1–81 (1998). MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett, A. Zanna, Lie-group methods, Acta Numer. 9, 215–365 (2000). CrossRefGoogle Scholar
  11. 11.
    L. Kharevych, Weiwei, Y. Tong, E. Kanso, J.E. Marsden, P. Schroder, M. Desbrun, Geometric, variational integrators for computer animation, in Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2006. Google Scholar
  12. 12.
    S. Lall, M. West, Discrete variational Hamiltonian mechanics, J. Phys. A Math. Gen. 39, 5509–5519 (2006). MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    T. Lee, M. Leok, N.H. McClamroch, Lie group variational integrators for the full body problem, Comput. Methods Appl. Mech. Eng. 196, 2907–2924 (2007). MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    M. Leok, N.H. McClamroch, T. Lee, A Lie group variational integrator for the attitude dynamics of a rigid body with applications to the 3D pendulum, in Proceedings of IEEE Conference on Control Applications (2005), pp. 962–967. Google Scholar
  15. 15.
    A. Lew, J.E. Marsden, M. Ortiz, M. West, Variational time integrators, Int. J. Numer. Methods Eng. 60, 153–212 (2004). MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    D. Lewis, J.C. Simo, Conserving algorithms for the dynamics of Hamiltonian systems on lie groups, J. Nonlinear Sci 4, 253–299 (1994). MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    D. Lewis, J.C. Simo, Conserving algorithms for the N-dimensional rigid body, Fields Inst. Commun. 10, 121–139 (1996). MathSciNetGoogle Scholar
  18. 18.
    S. Leyendecker, J.E. Marsden, M. Ortiz, Variational integrators for constrained mechanical systems, Preprint (2007). Google Scholar
  19. 19.
    S. Leyendecker, S. Ober-Blöbaum, J.E. Marsden, M. Ortiz, Discrete mechanics and optimal control for constrained multibody dynamics, in Proceedings of the 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. ASME International Design Engineering Technical Conferences (Proceedings of IDETC/MSNDC), 2007, pp. 1–10. Google Scholar
  20. 20.
    G.H. Livens, On Hamilton’s principle and the modified function in analytical dynamics, Proc. R. Soc. Edinb. 39, 113 (1919). Google Scholar
  21. 21.
    J.E. Marsden, S. Pekarsky, S. Shkoller, Discrete Euler–Poincaré and Lie–Poisson equations, Nonlinearity 12, 1647–1662 (1998). CrossRefMathSciNetGoogle Scholar
  22. 22.
    J.E. Marsden, J. Scheurle, The reduced Euler–Lagrange equations, Fields Inst. Commun. 1, 139–164 (1993). MathSciNetGoogle Scholar
  23. 23.
    J.E. Marsden, M. West, Discrete mechanics and variational integrators, Acta Numer. 10, 357–514 (2001). MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    R. Mclachlan, C. Scovel, Equivariant constrained symplectic integration, J. Nonlinear Sci. 5, 233–256 (1995). MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    J. Moser, A.P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Commun. Math. Phys. 139, 217–243 (1991). MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    H. Munthe-Kaas, Lie–Butcher theory for Runge–Kutta methods, BIT 43, 572–587 (1995). CrossRefMathSciNetGoogle Scholar
  27. 27.
    H. Munthe-Kaas, Runge–Kutta methods on Lie groups, BIT 38, 92–111 (1998). MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    H. Munthe-Kaas, B. Owren, Computations in a free Lie algebra, Philos. Trans. R. Soc. A 357, 957–982 (1999). MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    H. Munthe-Kaas, A. Zanna, Numerical Integration of Differential Equations on Homogeneous Manifolds (Springer, Berlin, 1997), pp. 305–315. Google Scholar
  30. 30.
    J.C. Simo, L. Vu-Quoc, On the dynamics in space of rods undergoing large motions—a geometrically exact approach, Comput. Methods Appl. Mech. Eng. 66, 125–161 (1988). MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    J.C. Simo, T.S. Wong, Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum, Int. J. Numer. Methods Eng. 31, 19–52 (1991). MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Y.B. Suris, Hamiltonian methods of Runge–Kutta type and their variational interpretation, Math. Model. 2, 78–87 (1990). MATHMathSciNetGoogle Scholar
  33. 33.
    J.M. Wendlandt, J.E. Marsden, Mechanical integrators derived from a discrete variational principle, Physica D 106, 223–246 (1997). MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    H. Yoshimura, J.E. Marsden, Dirac structures and Lagrangian mechanics Part I: Implicit Lagrangian systems, J. Geom. Phys. 57, 133–156 (2006). MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    H. Yoshimura, J.E. Marsden, Dirac structures in Lagrangian mechanics. Part II: Variational structures, J. Geom. Phys. 57, 209–250 (2006). MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© SFoCM 2008

Authors and Affiliations

  1. 1.Applied and Computational MathematicsCaltechPasadenaUSA
  2. 2.Control and Dynamical SystemsCaltechPasadenaUSA

Personalised recommendations