Foundations of Computational Mathematics

, Volume 9, Issue 3, pp 295–316 | Cite as

A Magnus- and Fer-Type Formula in Dendriform Algebras

Open Access
Article

Abstract

We provide a refined approach to the classical Magnus (Commun. Pure Appl. Math. 7:649–673, [1954]) and Fer expansion (Bull. Classe Sci. Acad. R. Belg. 44:818–829, [1958]), unveiling a new structure by using the language of dendriform and pre-Lie algebras. The recursive formula for the logarithm of the solutions of the equations X=1+λaX and Y=1−λYa in A[[λ]] is provided, where (A,,) is a dendriform algebra. Then we present the solutions to these equations as an infinite product expansion of exponentials. Both formulae involve the pre-Lie product naturally associated with the dendriform structure. Several applications are presented.

Keywords

Linear differential equation Linear integral equation Magnus expansion Fer expansion Dendriform algebra Pre-Lie algebra Rota–Baxter algebra Binary rooted trees 

Mathematics Subject Classification (2000)

16W25 17A30 17D25 37C10 05C05 81T15 

References

  1. 1.
    F.V. Atkinson, Some aspects of Baxter’s functional equation, J. Math. Anal. Appl. 7, 1–30 (1963). MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pac. J. Math. 10, 731–742 (1960). MathSciNetGoogle Scholar
  3. 3.
    S. Blanes, F. Casas, J.A. Oteo, J. Ros, Magnus and Fer expansions for matrix differential equations: the convergence problem, J. Phys. A: Math. Gen. 31, 259–268 (1998). MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    J. Cariñena, K. Ebrahimi-Fard, H. Figueroa, J.M. Gracia-Bondía, Hopf algebras in dynamical systems theory, Int. J. Geom. Method. Mod. Phys. 4(4), 577–646 (2007). MATHCrossRefGoogle Scholar
  5. 5.
    F. Chapoton, Un théorème de Cartier–Milnor–Moore–Quillen pour les algèbres dendriformes et les algèbres braces, J. Pure Appl. Algebra 168, 1–18 (2002). MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    K. Ebrahimi-Fard, Loday-type algebras and the Rota–Baxter relation, Lett. Math. Phys. 61, 139–147 (2002). MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    K. Ebrahimi-Fard, L. Guo, D. Manchon, Birkhoff type decompositions and the Baker–Campbell–Hausdorff recursion, Commun. Math. Phys. 267, 821–845 (2006). MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    K. Ebrahimi-Fard, D. Manchon, F. Patras, New identities in dendriform algebras, J. Algebra (2008 to appear). arXiv:0705.2636v1 [math.CO]. Google Scholar
  9. 9.
    F. Fer, Résolution de l’equation matricielle \(\dot{U}=pU\) par produit infini d’ exponentielles matricielles, Bull. Classe Sci. Acad. R. Belg. 44, 818–829 (1958). MathSciNetGoogle Scholar
  10. 10.
    I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. Retakh, J.-Y. Thibon, Noncommutative symmetric functions, Adv. Math. 112, 218–348 (1995). arXiv:hep-th/9407124. MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. Iserles, Solving linear differential equations by exponentials of iterated commutators, Numer. Math. 45, 183–199 (1984). MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. Iserles, Expansions that grow on trees, Not. AMS 49, 430–440 (2002). MATHMathSciNetGoogle Scholar
  13. 13.
    A. Iserles, S.P. Nørsett, in Geometric Integration: Numerical Solution of Differential Equations on Manifolds, ed. by C.J. Budd, A. Iserles. Philosophical Transactions of the Royal Society A, vol. 357 (London Mathematical Society, London, 1999), pp. 983–1020. Google Scholar
  14. 14.
    A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett, A. Zanna, Lie-group methods, Acta Numer. 9, 215–365 (2000). CrossRefGoogle Scholar
  15. 15.
    M. Kawski, Chronological algebras: combinatorics and control, Itogi Nauk. Tech. 68, 144–178 (2000). Google Scholar
  16. 16.
    S. Klarsfeld, J.A. Oteo, Recursive generation of higher-order terms in Magnus expansion, Phys. Rev. A 39, 3270–3273 (1989). CrossRefGoogle Scholar
  17. 17.
    J.-L. Loday, Cup-product for Leibniz cohomology and dual Leibniz algebras, Math. Scand. 77(2), 189–196 (1995). MATHMathSciNetGoogle Scholar
  18. 18.
    J.-L. Loday, in Dialgebras. Lect. Notes Math., vol. 1763 (Springer, Berlin, 2001), pp. 7–66. CrossRefGoogle Scholar
  19. 19.
    J.-L. Loday, M. Ronco, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, Contemp. Math. 346, 369–398 (2004). MathSciNetGoogle Scholar
  20. 20.
    W. Magnus, On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math. 7, 649–673 (1954). MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    B. Mielnik, J. Plebański, Combinatorial approach to Baker–Campbell–Hausdorff exponents, Ann. Inst. Henri Poincaré A XII, 215–254 (1970). Google Scholar
  22. 22.
    H. Munthe-Kaas, A. Zanna, in Foundations of Computational Mathematics, ed. by F. Cucker, M. Shub (Springer, Berlin, 1997), pp. 434–441. Google Scholar
  23. 23.
    J.A. Oteo, J. Ros, From time-ordered products to Magnus expansion, J. Math. Phys. 41, 3268–3277 (2000). MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    M. Ronco, Primitive elements in a free dendriform algebra, Contemp. Math. 207, 245–263 (2000). MathSciNetGoogle Scholar
  25. 25.
    G.-C. Rota, Baxter algebras and combinatorial identities. I, II., Bull. Am. Math. Soc. 75, 325–329 (1969); ibidem 330–334. MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    M.P. Schützenberger, in Séminaire Dubreil–Jacotin Pisot (Algèbre et théorie des nombres), Paris, Année 1958/59. Google Scholar
  27. 27.
    R.S. Strichartz, The Campbell–Baker–Hausdorff–Dynkin formula and solutions of differential equations, J. Funct. Anal. 72, 320–345 (1987). MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    R.M. Wilcox, Exponential operators and parameter differentiation in quantum physics, J. Math. Phys. 8, 962–982 (1967). MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    A. Zanna, Technical Report 1996/NA12, Department of Applied Mathematics and Theoretical Physics, University of Cambridge. Google Scholar

Copyright information

© SFoCM 2008

Authors and Affiliations

  1. 1.Max-Planck-Institut für MathematikBonnGermany
  2. 2.Université Blaise PascalAubièreFrance

Personalised recommendations