International Journal of Information Security

, Volume 18, Issue 1, pp 23–48 | Cite as

Design and implementation of Negative Authentication System

  • Dipankar Dasgupta
  • Abhijit Kumar NagEmail author
  • Denise Ferebee
  • Sanjib Kumar Saha
  • Kul Prasad Subedi
  • Arunava Roy
  • Alvaro Madero
  • Abel Sanchez
  • John R. Williams
Regular Contribution


Modern society is mostly dependent on online activities like official or social communications, fund transfers and so on. Unauthorized system access is one of the utmost concerns than ever before in cyber systems. For any cyber system, robust authentication is an absolute necessity for ensuring security and reliable access to all type of transactions. However, more than 80% of the current authentication systems are password based, and surprisingly, they are prone to direct and indirect cracking via guessing or side channel attacks. The inspiration of Negative Authentication System (NAS) is based on the negative selection algorithm. In NAS, the password-based authentication data for valid users are termed as password profile or self-region (positive profile); any element other than the self-region is defined as non-self-region in the same representative space. The anti-password detectors are generated which covers most of the non-self-region. There are also some uncovered regions left in the non-self-region for inducing uncertainty to the attackers. In this work, we describe the design and implementation of three approaches of NAS and its efficacy over the other authentication methods. These three approaches represent three different ways to achieve obfuscation of password points with non-password space. The experiments are conducted with both real and simulated password profiles to justify the efficiency of different implementations of NAS.


Cyber-security Levels of abstraction Security event Passwords Authentication Negative Authentication Hashing Salting 



This work was supported by IARPA Seedling program and Cooperative Agreement (Number N66001-12-C-2003) administered by the ONR SPAWAR Systems Center. Points of view and opinions on this paper are those of the author(s) and do not necessarily represent the position or policies of the USA. The authors are very thankful to the reviewers for their valuable feedback and thoughtful suggestions to improve the quality of the manuscript.


  1. 1.
    Bojinov, H., Bursztein, E., Boyen, X., Boneh, D.: Kamouflage: Loss-resistant password management. In: Computer Security—ESORICS 2010, pp. 286–302. Springer, Berlin (2010). Accessed 24 Jan 2017
  2. 2.
    Bond, M.: Comments on gridsure authentication. (2008). Accessed 24 Jan 2017
  3. 3.
    Bonneau, J.: Guessing human-chosen secrets. Ph.D. Thesis, University of Cambridge (2012). Accessed 24 Jan 2017
  4. 4.
    Brants, T., Franz, A.: The google web 1t 5-gram corpus version 1.1. LDC2006T13 (2006). Accessed 24 Jan 2017
  5. 5.
    Butler, R.: List of the 1000 most common surnames in the U.S. (2009). Accessed 24 Jan 2017
  6. 6.
    Camenisch, J., Lehmann, A., Neven, G.: Optimal distributed password verification. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 182–194. ACM, New York (2015). Accessed 24 Jan 2017
  7. 7.
    Cubrilovic, N.: Rockyou hack: from bad to worse (2009). Accessed 15 Nov 2017
  8. 8.
    Dasgupta, D., Azeem, R.: An investigation of negative authentication systems. In: Proceedings of the 3rd International Conference on Information Warfare and Security, pp. 117–126 (2008).;jsessionid=14EA96BC1BB9B1B9B8EFB47ECE961758?doi= Accessed 24 Jan 2017
  9. 9.
    Dasgupta, D., Ferebee, D., Saha, S., Nag, A.K., Madero, A., Sanchez, A., William, J., Subedi, K.P.: G-nas: A grid-based approach for negative authentication. In: Symposium on Computational Intelligence in Cyber Security (CICS) at IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, Orlando, Florida (2014). Accessed 24 Jan 2017
  10. 10.
    Dasgupta, D., Forrest, S.: An anomaly detection algorithm inspired by the immune system. In: Dasgupta, D. (ed.) Artificial Immune Systems and Their Applications, pp. 262–277. Springer, Berlin (1999)Google Scholar
  11. 11.
    Dasgupta, D., Ji, Z., Gonzalez, F.: Artificial immune system (AIS) research in the last five years. In: The 2003 Congress on Evolutionary Computation, 2003. CEC ’03, vol. 1, pp. 123–130 (2003). Accessed 24 Jan 2017
  12. 12.
    Dasgupta, D., Saha, S.: Password security through negative filtering. In: 2010 International Conference on Emerging Security Technologies (EST), pp. 83–89. IEEE, Washington (2010). Accessed 24 Jan 2017
  13. 13.
    De Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Berlin (2002). Accessed 24 Jan 2017
  14. 14.
    Esponda, F., Ackley, E.S., Helman, P., Jia, H., Forrest, S.: Protecting data privacy through hard-to-reverse negative databases. In: Information Security, pp. 72–84. Springer, Berlin (2006). Accessed 24 Jan 2017
  15. 15.
    Everspaugh, A., Chaterjee, R., Scott, S., Juels, A., Ristenpart, T.: The pythia PRF service. In: 24th USENIX Security Symposium (USENIX Security 15), pp. 547–562 (2015). Accessed 24 Jan 2017
  16. 16.
    Feldmeier, D.C., Karn, P.R.: Unix password security-ten years later. In: Advances in Cryptology, CRYPTO89 Proceedings, pp. 44–63. Springer (1990). Accessed 24 Jan 2017
  17. 17.
    Fülöp, Á., Kovács, L., Kurics, T., Windhager-Pokol, E.: Balabit mouse dynamics challenge data set (2016).
  18. 18.
    Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: IEEE Computer Society Symposium on Research in Security and Privacy, p. 202. Institute of Electrical and Electronics Engineers (1994). Accessed 24 Jan 2017
  19. 19.
    Fossi, M., Johnson, E., Turner, D., Mack, T., Blackbird, J., McKinney, D., Low, M.K., Adams, T., Laucht, M.P., Gough, J.: Symantec report on the underground economy. Symantec Corporation (2008). Accessed 24 Jan 2017
  20. 20.
    Gamboa, H., Fred, A.: A behavioral biometric system based on human-computer interaction. Proc. SPIE 5404, 381–392 (2004)CrossRefGoogle Scholar
  21. 21.
    Gong, L.: Collisionful keyed hash functions with selectable collisions. Inf. Process. Lett. 55(3), 167–170 (1995). Accessed 24 Jan 2017
  22. 22.
    Hofmeyr, S.A., Forrest, S.: Architecture for an artificial immune system. Evol. Comput. 8(4), 443–473 (2000). Accessed 24 Jan 2017
  23. 23.
    Ji, Z.: Negative selection algorithms: from the thymus to v-detector. Ph.D. Thesis (2006). AAI3230960
  24. 24.
    Ji, Z., Dasgupta, D.: V-detector: an efficient negative selection algorithm with probably adequate detector coverage. Inf. Sci. 179(10), 1390–1406 (2009). Accessed 24 Jan 2017
  25. 25.
    Juels, A., Rivest, R.L.: Honeywords: Making password-cracking detectable. In: Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, pp. 145–160. ACM, New York (2013). Accessed 24 Jan 2017
  26. 26.
    Kanerva, P.: Sparse Distributed Memory. MIT Press, Cambridge (1988). Accessed 24 Jan 2017
  27. 27.
    Khalil, G.: Password security thirty-five years late (2014). Accessed 24 Jan 2017
  28. 28.
    Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949). Accessed 24 Jan 2017
  29. 29.
    Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004). Accessed 24 Jan 2017
  30. 30.
    Perlroth, N.: Hackers in China attacked the times for last 4 months. NY Times, Jan 30 (2013). Accessed 24 Jan 2017
  31. 31.
    Schechter, S., Herley, C., Mitzenmacher, M.: Popularity is everything: a new approach to protecting passwords from statistical-guessing attacks. In: Proceedings of the 5th USENIX Conference on Hot Topics in Security, pp. 1–8. USENIX Association (2010). Accessed 24 Jan 2017
  32. 32.
    SkulSecurity: Password-skullsecurity (2011). Accessed 24 Jan 2017
  33. 33.
    Smith, R.E.: Authentication: from passwords to public keys. Addison-Wesley Longman Publishing Co., Inc. (2001). Accessed 24 Jan 2017
  34. 34.
    Song, H., Dharmapurikar, S., Turner, J., Lockwood, J.: Fast hash table lookup using extended bloom filter: an aid to network processing. ACM SIGCOMM Comput. Commun. Rev. 35(4), 181–192 (2005). Accessed 24 Jan 2017
  35. 35.
    Zheng, Y., Matsumoto, T., Imai, H.: Structural properties of one-way hash functions. In: Advances in Cryptology—CRYPT090, pp. 285–302. Springer, Berlin (1991). Accessed 24 Jan 2017

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Dipankar Dasgupta
    • 1
  • Abhijit Kumar Nag
    • 2
    Email author
  • Denise Ferebee
    • 1
  • Sanjib Kumar Saha
    • 1
  • Kul Prasad Subedi
    • 1
  • Arunava Roy
    • 1
    • 4
  • Alvaro Madero
    • 3
  • Abel Sanchez
    • 3
  • John R. Williams
    • 3
  1. 1.The University of MemphisMemphisUSA
  2. 2.Texas A&M University-Central TexasKilleenUSA
  3. 3.Massachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of Computer Science and EngineeringSRM UniversityChennaiIndia

Personalised recommendations