Authentication in mobile devices through hand gesture recognition

  • J. Guerra-CasanovaEmail author
  • C. Sánchez-Ávila
  • G. Bailador
  • A. de Santos Sierra
Regular Contribution


This article proposes an innovative biometric technique based on the idea of authenticating a person on a mobile device by gesture recognition. To accomplish this aim, a user is prompted to be recognized by a gesture he/she performs moving his/her hand while holding a mobile device with an accelerometer embedded. As users are not able to repeat a gesture exactly in the air, an algorithm based on sequence alignment is developed to correct slight differences between repetitions of the same gesture. The robustness of this biometric technique has been studied within 2 different tests analyzing a database of 100 users with real falsifications. Equal Error Rates of 2.01 and 4.82% have been obtained in a zero-effort and an active impostor attack, respectively. A permanence evaluation is also presented from the analysis of the repetition of the gestures of 25 users in 10 sessions over a month. Furthermore, two different gesture databases have been developed: one made up of 100 genuine identifying 3-D hand gestures and 3 impostors trying to falsify each of them and another with 25 volunteers repeating their identifying 3-D hand gesture in 10 sessions over a month. These databases are the most extensive in published studies, to the best of our knowledge.


Biometrics Hand gesture recognition Mobile Security Sequence alignment Accelerometer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellman, R.: Dynamic Programming. Dover Publications, New YorkGoogle Scholar
  2. 2.
    Chin, Y.J., Ong, T.S., Goh, M.K., Hiew, B.Y.: Integrating palmprint and fingerprint for identity verification. In: International Conference on Network and System Security, pp. 437–442 (2009)Google Scholar
  3. 3.
    Cho, D., Park, K.R., Rhee, D.W., Kim, Y., Yang, J.: Pupil and iris localization for iris recognition in mobile phones. In: International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, and International Workshop on Self-Assembling Wireless Networks, pp. 197–201 (2006)Google Scholar
  4. 4.
    Chowhan S., Shinde G.N.: Iris biometrics recognition application in security management. Congr. Image Signal Process. 1, 661–665 (2008)Google Scholar
  5. 5.
    Clarke N.L., Furnell S.M.: Authenticating mobile phone users using keystroke analysis. Int. J. Inf. Secur. 6(1), 1–14 (2006)CrossRefGoogle Scholar
  6. 6.
    Durbin R., Eddy S., Krogh A., Mitchison G.: Biological Sequence Analysis, 11th edn. Cambridge University Press, Cambridge (2006)Google Scholar
  7. 7.
    Friederike A.J., Jain A.K., Griess F.D., Connell S.D., Lansing E.J.M.: On-line signature verification. Pattern Recognit. 35, 2963–2972 (2002)zbMATHCrossRefGoogle Scholar
  8. 8.
    Gafurov, D., Snekkkenes, E.: Arm swing as a weak biometric for unobtrusive user authentication. In: International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 1080–1087 (2008)Google Scholar
  9. 9.
    Guerra-Casanova J., Sánchez-Ávila C., Santos-Sierra A., Bailador G., Jara-Vera V.: A real-time in-air signature biometric technique using a mobile device embedding an accelerometer. In: Zavoral, F., Yaghob, J., Pichappan, P., El-Qawasmeh, E. (eds) Networked Digital Technologies, Communications in Computer and Information Science, vol. 87, pp. 497–503. Springer, Berlin (2010)Google Scholar
  10. 10.
    Guo, J., Doermann, D., Rosenfeld, A.: Local correspondence for detecting random forgeries. In: International Conference on Document Analysis and Recognition, p. 319 (1997)Google Scholar
  11. 11.
    He, Z., Jin, L., Zhen, L., Huang, J.: Gesture recognition based on 3d accelerometer for cell phones interaction. In: IEEE Asia Pacific Conference on Circuits and Systems, 2008. APCCAS 2008, pp. 217–220 (2008)Google Scholar
  12. 12.
    Hsu, W.H., Chiang, Y.Y., Lin, W.Y., Tai, W.C., Wu, J.S.: Integrating lcs and svm for 3d handwriting recognition on handheld devices using accelerometers. In: Proceedings of the 3rd International Conference on Communications and information technology, CIT’09, pp. 195–197. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA (2009)Google Scholar
  13. 13.
    Iso, T., Yamazaki, K.: Gait analyzer based on a cell phone with a single three-axis accelerometer. In: MobileHCI ’06: Proceedings of the 8th Conference on Human-Computer Interaction with Mobile Devices and Services, pp. 141–144. ACM, New York, NY (2006)Google Scholar
  14. 14.
    Jain A., Hong L., Pankanti S.: Biometric identification. Commun. ACM 43(2), 90–98 (2000)CrossRefGoogle Scholar
  15. 15.
    Jain A.K., Flynn P., Ross A.A.: Handbook of Biometrics. Springer, Secaucus, NJ (2007)Google Scholar
  16. 16.
    Jain A.K., Griess F.D., Connell S.D.: On-line signature verification. Pattern Recognit. 35(12), 2963–2972 (2002)zbMATHCrossRefGoogle Scholar
  17. 17.
    Kanhangad, V., Kumar, A., Zhang, D.: Combining 2d and 3d hand geometry features for biometric verification. In: Computer Vision and Pattern Recognition Workshop, pp. 39–44 (2009)Google Scholar
  18. 18.
    Keir, P., Payne, J., Elgoyhen, J., Horner, M., Naef, M., Anderson, P.: Gesture-recognition with non-referenced tracking. In: IEEE Symposium on 3D User Interfaces, 2006. 3DUI 2006, pp. 151–158 (2006)Google Scholar
  19. 19.
    Kela J., KorpipŠŠ P., MŠntyjŠrvi J., Kallio S., Savino G., Jozzo L., Marca S.: Accelerometer-based gesture control for a design environment. Pers. Ubiquitous Comput. 10, 285–299 (2006)CrossRefGoogle Scholar
  20. 20.
    Little J., Boyd J.E.: Recognizing people by their gait: the shape of motion. Videre. 1, 1–32 (1996)Google Scholar
  21. 21.
    Liu, J., Wang, Z., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uWave: accelerometer-based personalized gesture recognition and its applications. In: IEEE International Conference on Pervasive Computing and Communications, pp. 1–9 (2009)Google Scholar
  22. 22.
    Manabe, H., Yamakawa, Y., Sasamoto, T., Sasaki, R.: Security evaluation of biometrics authentications for cellular phones. In: International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 34–39 (2009)Google Scholar
  23. 23.
    Mäntyjärvi, J., Kela, J., Korpipää, P., Kallio, S.: Enabling fast and effortless customisation in accelerometer based gesture interaction. In: MUM ’04: Proceedings of the 3rd International Conference on Mobile and Ubiquitous Multimedia, pp. 25–31. ACM, New York, NY (2004)Google Scholar
  24. 24.
    Mäntyjärvi, J., Kela, J., Korpipää, P., Kallio, S.: Enabling fast and effortless customisation in accelerometer based gesture interaction. In: Proceedings of the 3rd International Conference on Mobile and Ubiquitous Multimedia, MUM ’04, pp. 25–31. ACM, New York, NY (2004)Google Scholar
  25. 25.
    Mantyla, V.M., Mantyjarvi, J., Seppanen, T., Tuulari, E.: Hand gesture recognition of a mobile device user. In: 2000 IEEE International Conference on Multimedia and Expo, 2000. ICME 2000, vol. 1, pp. 281 –284 (2000)Google Scholar
  26. 26.
    Matsuo, K., Okumura, F., Hashimoto, M., Sakazawa, S., Hatori, Y.: Arm swing identification method with template update for long term stability (2007). Lecture Notes in Computer Science; SP: 211Google Scholar
  27. 27.
    Miller W.: An introduction to bioinformatics algorithms Neil C. Jones and Pavel A. Pevzner. J. Am. Stat. Assoc. 101, 855–855 (2006)CrossRefGoogle Scholar
  28. 28.
    Nalwa, V.S.: Automatic on-line signature verification. In: Proceedings of the IEEE, pp. 215–239 (1997)Google Scholar
  29. 29.
    Nandini, C., RaviKumar, C.N.: Multi-biometrics approach for facial recognition. In: International Conference on Computational Intelligence and Multimedia Applications, vol. 2, pp. 417–422 (2007)Google Scholar
  30. 30.
    Okumura, F., Kubota, A., Hatori, Y., Matsuo, K., Hashimoto, M., Koike, A.: A study on biometric authentication based on arm sweep action with acceleration sensor. In: International Symposium on Intelligent Signal Processing and Communications, 2006. ISPACS ’06, pp. 219–222 (2006)Google Scholar
  31. 31.
    Phillips P.J., Martin A., Wilson C.L., Przybocky M.: An introduction to evaluating biometric systems. Computer 21(2), 56–63 (2000)CrossRefGoogle Scholar
  32. 32.
    Poh, N., Kittler, J., Smith, R., Tena, J.R.: A method for estimating authentication performance over time, with applications to face biometrics. In: CIARP’07: Proceedings of the Congress on Pattern Recognition 12th Iberoamerican Conference on Progress in Pattern Recognition, Image Analysis and Applications, pp. 360–369. Springer, Berlin (2007)Google Scholar
  33. 33.
    Rybnik, M., Tabedzki, M., Saeed, K.: A keystroke dynamics based system for user identification. International Conference on Computer Information Systems and Industrial Management Applications 0, pp. 225–230 (2008)Google Scholar
  34. 34.
    Shabeer, H.A., Suganthi, P.: Mobile phones security using biometrics. In: International Conference on Computational Intelligence and Multimedia Applications, vol. 4, pp. 270–274 (2007)Google Scholar
  35. 35.
    Steve Dowling Nancy Paxton, J.H.: Apple reports first quarter results (2009).
  36. 36.
    Tadeusiewicz, R., Demenko, G.: Voice as a key. In: International Conference on Biometrics and Kansei Engineering, pp. 28–33 (2009)Google Scholar
  37. 37.
    Tao, Q., Veldhuis, R.: Biometric authentication for a mobile personal device. In: Annual International Conference on Mobile and Ubiquitous Systems, pp. 1–3 (2006)Google Scholar
  38. 38.
    Verplaetse C.: Inertial proprioceptive devices: self-motion-sensing toys and tools. IBM Syst. J. 35(3–4), 639–650 (1996)CrossRefGoogle Scholar
  39. 39.
    Wayman J.L., Jain A.K., Maltoni D., Maio D.: Biometric Systems: Technology, Design and Performance Evaluation. Springer, New York (2004)Google Scholar
  40. 40.
    Yeung, D.Y., Chang, H., Xiong, Y., George, S., Kashi, R., Matsumoto, T., Rigoll, G.: Biometric Authentication, chap. SVC2004: First International Signature Verification Competition, pp. 1–30. Springer, Berlin (2004.Google Scholar
  41. 41.
    Zhu, Y., Tan, T., Wang, Y.: Biometric personal identification based on handwriting. In: International Conference on Pattern Recognition, vol. 2, p. 2797 (2000)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • J. Guerra-Casanova
    • 1
    Email author
  • C. Sánchez-Ávila
    • 1
  • G. Bailador
    • 1
  • A. de Santos Sierra
    • 1
  1. 1.Centro de Domótica Integral (CeDInt-UPM)Universidad Politécnica de MadridPozuelo de Alarcón, Madrid Spain

Personalised recommendations