Advertisement

Arbitrary initial conditions and the dimension of indeterminacy in linear rational expectations models

  • Marco M. SorgeEmail author
Article

Abstract

Indeterminate equilibrium rational expectations (RE) models are ubiquitous in both theoretical and applied work in dynamic macroeconomics. The issue of characterizing the exact dimension of indeterminacy—i.e. of deriving the full set of causal and stable solutions to linear RE models—has only recently been addressed in the context of general and multivariate settings. This paper complements existing results by identifying bounds on the observable dimension of indeterminacy of linear RE models in the presence of arbitrary initial conditions. Implications for the estimation of indeterminate equilibrium RE models are discussed.

Keywords

Rational expectations Indeterminacy Initial conditions 

JEL Classification

C62 E00 

Notes

References

  1. Al-Sadoon, M.M.: The linear systems approach to linear rational expectations models. Econom. Theory 34, 628–658 (2018)CrossRefGoogle Scholar
  2. Benhabib, J., Farmer, R.E.A.: Indeterminacy and sunspots in macroeconomics. In: Taylor, J., Woodford, M. (eds.) Handbook of Macroeconomics, vol. 1A, pp. 387–448. North-Holland, Amsterdam (1999)CrossRefGoogle Scholar
  3. Bianchi, F., Nicolò, G.: A generalized approach to indeterminacy in linear rational expectations models. NBER W.P. No. 23521 (2017)Google Scholar
  4. Broze, L., Szafarz, A.: The Econometric Analysis of Non-uniqueness in Rational Expectations Models. North-Holland, Amsterdam (1991)Google Scholar
  5. Carravetta, F., Sorge, M.M.: A “nearly ideal” solution to linear time-varying rational expectations models. Comput. Econ. 35, 331–353 (2010)CrossRefGoogle Scholar
  6. Castelnuovo, E., Fanelli, L.: Monetary policy indeterminacy and identification failure in the U.S.: Results from a robust test. J. Appl. Econom. 30, 857–1010 (2015)CrossRefGoogle Scholar
  7. Fanelli, L.: Determinacy, indeterminacy and dynamic misspecification in linear rational expectations models. J. Econom. 170, 153–163 (2012)CrossRefGoogle Scholar
  8. Fanelli, L., Sorge, M.M.: Indeterminate forecast accuracy under indeterminacy. J. Macroecon. 53, 57–70 (2017)CrossRefGoogle Scholar
  9. Farmer, R.E.A., Khramov, V., Nicolò, G.: Solving and estimating indeterminate DSGE models. J. Econ. Dyn. Control 54, 17–36 (2015)CrossRefGoogle Scholar
  10. Funovits, B.: The full set of solutions of linear rational expectations models. Econ. Lett. 161, 47–51 (2017)CrossRefGoogle Scholar
  11. Lubik, T.A., Schorfheide, F.: Computing sunspot equilibria in linear rational expectations models. J. Econ. Dyn. Control 28, 273–285 (2003)CrossRefGoogle Scholar
  12. Lubik, T., Schorfheide, F.: Testing for indeterminacy: an application to U.S. monetary policy. Am. Econ. Rev. 94, 190–217 (2004)CrossRefGoogle Scholar
  13. Moler, C.B., Stewart, G.W.: An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal. 10, 241–256 (1973)CrossRefGoogle Scholar
  14. Onatski, A.: Winding number criterion for existence and uniqueness of equilibrium in linear rational expectations models. J. Econ. Dyn. Control 30, 323–345 (2006)CrossRefGoogle Scholar
  15. Sims, C.A.: Solving linear rational expectations models. Comput. Econ. 20, 1–20 (2001)CrossRefGoogle Scholar
  16. Sorge, M.M.: News shocks or parametric indeterminacy? An observational equivalence result in linear rational expectations models. Econ. Lett. 114, 198–200 (2012)CrossRefGoogle Scholar

Copyright information

© Associazione per la Matematica Applicata alle Scienze Economiche e Sociali (AMASES) 2019

Authors and Affiliations

  1. 1.University of Salerno, University of Göttingen and CSEFFiscianoItaly

Personalised recommendations