Decisions in Economics and Finance

, Volume 42, Issue 2, pp 503–525 | Cite as

On parameter estimation of Heston’s stochastic volatility model: a polynomial filtering method

  • F. Cacace
  • A. Germani
  • M. PapiEmail author


In this paper, we investigate the problem of estimating the volatility from the underlying asset price for discrete-time observations. This topic has attracted much research interest due to the key role of the volatility in finance. In this paper, we consider the Heston stochastic volatility model with jumps and we develop a new polynomial filtering method for the estimation of the volatility. The method relies on a linear filter which uses a polynomial state-space formulation of the discrete version of the continuous-time model. We demonstrate that a higher-order polynomial filtering method can be efficiently applied in the context of stochastic volatility models. Then, we compare our approach with some, well-established, techniques in the literature.


Stochastic volatility Variance gamma Polynomial filtering Likelihood 



  1. Ait-Sahalia, Y., Kimmel, R.: Maximum likelihood estimation of stochastic volatility, Models. J. Financ. Econ. 83, 413–452 (2007)Google Scholar
  2. Ait-Sahalia, Y., Kimmel, R.: Estimating affine multifactor term structure models using closed-form likelihood expansions. J. Financ. Econ. 98, 113–144 (2010)Google Scholar
  3. Anderson, B.D.O., Moore, J.B.: Optim. Filter. Prentice Halls, Englewood Cliffs (1979)Google Scholar
  4. Arulampalam, S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50, 174–188 (2002)Google Scholar
  5. Atiya, A.F., Wall, S.: An analytic approximation of the likelihood function for the Heston model volatility estimation problem. Quant. Finance 9, 289–296 (2009)Google Scholar
  6. Bakshi, G., Cao, C., Chen, Z.: Empirical performance of alternative option pricing models. J Finance 52, 2003–2049 (1997)Google Scholar
  7. Barndorff-Nielsen, O.: Processes of normal inverse Gaussian type. Finance Stoch. 1, 41–68 (1998)Google Scholar
  8. Bates, D.S.: Jump and stochastic volatility: exchange rate processes implicit in Deutsche mark options. Rev. Financ. Stud. 9, 69–107 (1996)Google Scholar
  9. Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996)Google Scholar
  10. Black, F., Scholes, M.: The pricing of options and corporate Liabilities. J. Polit. Econ. 81, 637–59 (1973)Google Scholar
  11. Black, F.: Studies of stock market volatility changes. In: Proceedings of the American Statistical Association, Business and Economic Statistics Section, pp. 177–181 (1976)Google Scholar
  12. Bouchaud, J.P., Potters, M.: Theory of Financial Risks. Cambridge University Press, Cambridge (2001)Google Scholar
  13. Carr, P., Wu, L.: The finite moment log stable process and option pricing. J. Finance 58, 753–777 (2003)Google Scholar
  14. Carr, P., Chang, E.C., Madan, D.B.: The variance gamma process and option pricing. Eur Finance Rev. 2, 79–105 (1998)Google Scholar
  15. Carravetta, F., Germani, A., Raimondi, M.: Polynomial filtering for linear discrete-time non-Gaussian systems. SIAM J. Control Optim. 34, 1666–1690 (1996)Google Scholar
  16. Carravetta, F., Germani, A., Raimondi, M.: Polynomial filtering of discrete-time stochastic linear systems with multiplicative state noise. IEEE Trans. Automat. Control 42, 1106–1126 (1997)Google Scholar
  17. Carravetta, F., Germani, A., Shuakayev, M.K.: A new suboptimal approach to the filtering problem for bilinear stochastic differential systems. SIAM J. Control Optim. 38, 1171–1203 (2000)Google Scholar
  18. Chernov, M., Gallant, R., Ghysels, E., Tauchen, G.: Alternative models for stock price dynamics. J. Econom. 116, 225–257 (2003)Google Scholar
  19. Christofersen, P., Jacobs, K., Mimouni, K.: Volatility dynamics for the S&P500: evidence from realized volatility, daily returns and option prices. Rev. Financ. Stud. 23, 3141–3189 (2010)Google Scholar
  20. Cox, J., Ingersoll, J., Ross, S.: A theory of the term structure of interest rates. Econometrica 53, 385–408 (1985)Google Scholar
  21. De Santis, A., Germani, A., Raimondi, M.: Optimal quadratic filtering of linear discrete time non-Gaussian systems. IEEE Trans. Autom. Control. 40, 1274–1278 (1995)Google Scholar
  22. Dragulescu, A.A., Yakovenko, V.M.: Probability distribution of returns in the Heston model with stochastic volatility. Quant. Finance 2, 443–453 (2002)Google Scholar
  23. Duffie, D., Filipovic, D., Schachermayer, W.: Affine processes and applications in finance. Ann. Appl. Probab. 13, 984–1053 (2003)Google Scholar
  24. Duffie, D., Pan, J., Singleton, K.: Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68, 1343–1376 (2000)Google Scholar
  25. Eberlein, E., Keller, U., Prause, K.: New insights into smile, mispricing and value at risk: the hyperbolic model. J. Bus. 71, 371–405 (1998)Google Scholar
  26. Eraker, B.: MCMC analysis of diffusion models with application to finance. J. Bus. Econ. Stat. 19, 177–191 (2001)Google Scholar
  27. Eraker, B.: Do stock prices and volatility jump? evidence from spot and option prices. J. Finance 59, 1367–1403 (2004)Google Scholar
  28. Eraker, B., Johannes, M., Polson, N.G.: The impact of jumps in equity index volatility and returns. J. Finance 58, 1269–1300 (2003)Google Scholar
  29. Fasano, A., Germani, A., Monteriè, A.: Reduced-order quadratic Kalman-like filtering of non-Gaussian systems. IEEE TAC 58, 1744–1756 (2013)Google Scholar
  30. Harvey, A.C.: Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, Cambridge (1989)Google Scholar
  31. Haykin, S.: Kalman Filters. In: Haykin, S. (ed.) Kalman Filtering and Neural Networks. Wiley, New York (2001)Google Scholar
  32. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 13, 585–625 (1993)Google Scholar
  33. Hirsa, A., Madan, D.B.: Pricing American options under variance gamma. J. Comput. Finance 7(2), 63–80 (2004)Google Scholar
  34. Huang, J., Wu, L.: Specification analysis of option pricing models based on time-changed Lévy processes. J. Finance 59, 1405–1439 (2003)Google Scholar
  35. Jacquier, E., Polson, N.G., Rossi, P.: Bayesian analysis of stochastic volatility models with leverage effect and fat tails. J. Econom. 122, 185–212 (2004)Google Scholar
  36. Javaheri, A., Lautier, D., Galli, A.: Filtering in finance. Wilmott Mag. 5, 67–83 (2003)Google Scholar
  37. Javaheri, A.: Inside Volatility Arbitrage, the Secrets of Skewness. Wiley, Hoboken (2005)Google Scholar
  38. Johannes, M.S., Polson, N.G., Stroud, J.R.: Optimal filtering of jump diffusions: extracting latent states from asset prices. Rev. Financ. Stud. 22, 2759–2799 (2005)Google Scholar
  39. Li, H., Wells, M., Yu, L.: A Bayesian analysis of return dynamics with Lévy jumps. Rev. Financ. Stud. 21, 2345–2378 (2008)Google Scholar
  40. Liptser, R.S., Shiryaev, A.N.: Statistics of Random Processes—I. General Theory. Springer, Berlin (2013)Google Scholar
  41. Madan, D.B., Carr, P., Chang, E.C.: The variance gamma process and option pricing. Eur. Finance Rev. 2, 79–105 (1998)Google Scholar
  42. Madan, D.B., Milne, F.: Option pricing with variance gamma martingale components. Math. Finance 1(4), 39–55 (1991)Google Scholar
  43. Madan, D.B., Seneta, E.: The variance gamma model for share market return. J. Bus. 63(4), 511–524 (1990)Google Scholar
  44. Stroud, J.R., Polson, N.G., Miiller, P.: Practical filtering for stochastic volatility models. In: Harvey, A., Koopman, S., Shephard, N. (eds.) State Space and Unobserved Components Models, pp. 236–247. Cambridge University Press, Cambridge (2004)Google Scholar
  45. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, vol. 293. Springer, Berlin (1991)Google Scholar
  46. Watanabe, T.: Non-linear filtering approach to stochastic volatility models with an application to daily stock returns. J. Appl. Econom. 14, 101–121 (1999)Google Scholar

Copyright information

© Associazione per la Matematica Applicata alle Scienze Economiche e Sociali (AMASES) 2019

Authors and Affiliations

  1. 1.School of EngineeringUniversità CBMRomeItaly
  2. 2.Department of Electrical and Information EngineeringUniversita’ dell’AquilaL’AquilaItaly

Personalised recommendations