Time-consistency of risk measures: how strong is such a property?

  • Elisa Mastrogiacomo
  • Emanuela Rosazza GianinEmail author


Quite recently, a great interest has been devoted to time-consistency of risk measures in its different formulations (see Delbaen in Memoriam Paul-André Meyer, Lecture notes in mathematics, vol 1874, pp 215–258, 2006; Föllmer and Penner in Stat Decis 14(1):1–15, 2006; Bion-Nadal in Stoch Process Appl 119:633–654, 2009; Delbaen et al. in Finance Stoch 14(3):449–472, 2010; Laeven and Stadje in Math Oper Res 39:1109–1141, 2014, among many others). However, almost all the papers address to coherent or convex risk measures satisfying cash-additivity. In the present work, we study time-consistency for more general dynamic risk measures where either only cash-invariance or both cash-invariance and convexity are dropped. This analysis is motivated by the recent papers of El Karoui and Ravanelli (Math Finance 19:561–590, 2009) and Cerreia-Vioglio et al. (Math Finance 21(4):743–774, 2011) who discussed and weakened the axioms above by introducing cash-subadditivity and quasi-convexity. In particular, we investigate and discuss whether the notion of time-consistency is too restrictive, when considered in the general framework of quasi-convex and cash-subadditive risk measures. Finally, we provide some conditions guaranteeing time-consistency in this more general framework.


Dynamic risk measures Time-consistency Quasi-convex risk measures Cash-subadditive risk measures Cocycle property m-stability 

Mathematics Subject Classification

60G44 91B30 91G30 46A20 

JEL Classification

G11 G13 G22 



  1. Acciaio, B., Penner, I.: Dynamic Risk Measures. Advanced Mathematical Methods for Finance, pp. 1–34. Springer, Berlin (2011)Google Scholar
  2. Acciaio, B., Föllmer, H., Penner, I.: Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles. Finance Stoch. 16, 669–709 (2012)Google Scholar
  3. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9(3), 203–228 (1999)Google Scholar
  4. Artzner, P., Delbaen, F., Eber, J.M., Heath, D., Ku, H.: Coherent multiperiod risk adjusted values and Bellman’s principle. Preprint. ETH Zurich, Switzerland (2004)Google Scholar
  5. Bartl, D. (2016): Pointwise dual representation of dynamic convex expectation. Working paper. arXiv:1612.09103v1
  6. Bereanu, B.: Quasi-convexity, strictly quasi-convexity and pseudo-convexity of composite objective functions. Revue francaise d’automatique, informatique, recherche opérationnelle. Mathématique 6, 15–26 (1972)Google Scholar
  7. Biagini, S., Bion-Nadal, J.: Dynamic quasi concave performance measures. J. Math. Econ. 55, 143–153 (2014)Google Scholar
  8. Bielecki, T.R., Cialenco, I., Pitera, M.: A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LM-measure perspective. Probab. Uncertain. Quant. Risk 2(3), 1–52 (2017)Google Scholar
  9. Bion-Nadal, J.: Dynamic risk measures: time consistency and risk measures from BMO martingales. Finance Stoch. 12, 219–244 (2008)Google Scholar
  10. Bion-Nadal, J.: Time consistent dynamic risk processes. Stoch. Process. Appl. 119, 633–654 (2009)Google Scholar
  11. Cheridito, P., Kupper, M.: Recursiveness of indifference prices and translation-invariant preferences. Math. Finan. Econ. 2, 173–188 (2009)Google Scholar
  12. Cheridito, P., Kupper, M.: Composition of time-consistent dynamic monetary risk measures in discrete time. Int. J. Theor. Appl. Finance 14(1), 137–162 (2011)Google Scholar
  13. Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., Montrucchio, L.: Risk measures: rationality and diversification. Math. Finance 21(4), 743–774 (2011)Google Scholar
  14. Cheridito, P., Delbaen, F., Kupper, M.: Coherent and convex monetary risk measures for bounded càdlàg processes. Stoch. Process. Appl. 112(1), 1–22 (2004)Google Scholar
  15. Cheridito, P., Delbaen, F., Kupper, M.: Coherent and convex monetary risk measures for unbounded càdlàg processes. Finance Stoch. 9(3), 369–387 (2005)Google Scholar
  16. Cheridito, P., Delbaen, F., Kupper, M.: Dynamic monetary risk measures for bounded discrete time processes. Electron. J. Probab. 11, 57–106 (2006)Google Scholar
  17. de Finetti, B.: Sulle stratificazioni convesse. Ann. Mat. Pura Appl. 30, 173–183 (1949)Google Scholar
  18. Delbaen, F.: Coherent risk measures. Cattedra Galileiana. Lecture Notes, Scuola Normale Superiore, Pisa, Italy (2000)Google Scholar
  19. Delbaen, F.: Coherent risk measures on general probability spaces. In: Sandmann, K., Schönbucher, P.J. (eds.) Advances in Finance and Stochastics, pp. 1–37. Springer, Berlin (2002)Google Scholar
  20. Delbaen, F.: The structure of \(m\)-stable sets and in particular of the set of risk neutral measures. In: Memoriam Paul-André Meyer, Lecture Notes in Mathematics, vol. 1874, pp. 215–258 (2006)Google Scholar
  21. Delbaen, F., Peng, S., Rosazza Gianin, E.: Representation of the penalty term of dynamic concave utilities. Finance Stoch. 14(3), 449–472 (2010)Google Scholar
  22. Deprez, O., Gerber, H.U.: On convex principles of premium calculation. Insur. Math. Econ. 4, 179–189 (1985)Google Scholar
  23. Detlefsen, K., Scandolo, G.: Conditional and dynamic convex risk measures. Finance Stoch. 9(4), 539–561 (2005)Google Scholar
  24. Drapeau, S., Kupper, M.: Risk preferences and their robust representation. Math. Oper. Res. 38(1), 28–62 (2013)Google Scholar
  25. Drapeau, S., Kupper, M., Tangpi, L., Rosazza Gianin, E.: Dual representation of minimal supersolutions of convex BSDEs. Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques 52(2), 868–887 (2016)Google Scholar
  26. El Karoui, N., Ravanelli, C.: Cash sub-additive risk measures and interest rate ambiguity. Math. Finance 19, 561–590 (2009)Google Scholar
  27. Fabella, R.V.: Quasi-concave (composition) functions with nonconcave argument functions. Int. Econ. Rev. 33, 473–477 (1992)Google Scholar
  28. Föllmer, H., Penner, I.: Convex risk measures and the dynamics of their penalty functions. Stat. Decis. 14(1), 1–15 (2006)Google Scholar
  29. Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance Stoch. 6(4), 429–447 (2002)Google Scholar
  30. Föllmer, H., Schied, A.: Stochastic Finance, 2nd edn. de Gruyter, Berlin (2008)Google Scholar
  31. Frittelli, M., Maggis, M.: Dual representation of quasiconvex conditional maps. SIAM J. Financ. Math. 2, 357–382 (2011a)Google Scholar
  32. Frittelli, M., Maggis, M.: Conditional certainty equivalent. Int. J. Theor. Appl. Finance 14(1), 41–59 (2011b)Google Scholar
  33. Frittelli, M., Rosazza Gianin, E.: Putting order in risk measures. J. Bank. Finance 26(7), 1473–1486 (2002)Google Scholar
  34. Frittelli, M., Rosazza Gianin, E.: Dynamic convex risk measures. In: Szegö, G. (ed.) Risk Measures for the 21st Century, pp. 227–248. Wiley, New York (2004)Google Scholar
  35. Goovaerts, M.J., Kaas, R., Laeven, R.J.A.: Decision principles derived from risk measures. Insur. Math. Econ. 47, 294–302 (2010)Google Scholar
  36. Greenberg, H.J., Pierskalla, W.P.: A review of quasi-convex functions. Oper. Res. 19, 1553–1570 (1971)Google Scholar
  37. Klöppel, S., Schweizer, M.: Dynamic utility indifference valuation via convex risk measures. Math. Finance 17(4), 599–627 (2007)Google Scholar
  38. Laeven, R.J.A., Stadje, M.A.: Robust portfolio choice and indifference valuation. Math. Oper. Res. 39, 1109–1141 (2014)Google Scholar
  39. Mangasarian, O.L.: Convexity, pseudo-convexity and quasi-convexity of composite functions. Cahiers du Centre d’Etudes de Recherche Opérationelle 12, 114–122 (1970)Google Scholar
  40. Mastrogiacomo, E., Rosazza Gianin, E.: Time-consistency of cash-subadditive risk measures. Working paper (2015). arXiv:1512.03641
  41. Neveu, J.: Discrete Parameter Martingales. North Holland Publishing Company, Amsterdam (1975)Google Scholar
  42. Riedel, F.: Dynamic coherent risk measures. Stoch. Process. Appl. 112(2), 185–200 (2004)Google Scholar
  43. Roorda, B., Schumacher, J.M.: Weakly time consistent concave valuations and their dual representations. Finance Stoch. 20(1), 123–151 (2016)Google Scholar
  44. Rosazza Gianin, E.: Risk measures via g-expectations. Insur. Math. Econ. 39, 19–34 (2006)Google Scholar

Copyright information

© Associazione per la Matematica Applicata alle Scienze Economiche e Sociali (AMASES) 2019

Authors and Affiliations

  1. 1.Dipartimento di EconomiaUniversity of InsubriaVareseItaly
  2. 2.Dipartimento di Statistica e Metodi QuantitativiUniversity of Milano-BicoccaMilanItaly

Personalised recommendations