Advertisement

Decisions in Economics and Finance

, Volume 35, Issue 1, pp 1–28 | Cite as

Risk aversion and risk vulnerability in the continuous and discrete case

A unified treatment with extensions
  • Martin Bohner
  • Gregory M. Gelles
Article

Abstract

This paper discusses utility functions for money, where allowable money values are from an arbitrary nonempty closed subset of the real numbers. Thus, the classical case, where this subset is a closed interval (bounded or not) of the real line, is included in the study. The discrete case, where this subset is the set of all integer numbers, is also included. In a sense, the discrete case (which has not been addressed in the literature thus far) is more suitable for real-world applications than the continuous case. In this general setting, the concepts of risk aversion and risk premium are defined, an analogue of Pratt’s fundamental theorem is proved, and temperance, prudence, and risk vulnerability are examined.

Keywords

Utility function Time scale Delta derivative Risk aversion Risk vulnerability 

JEL Classification

C02 D81 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrow, K.J.: The theory of risk aversion. In: Aspects of the theory of risk bearing, Yrjö Jahnsson Saatio, Helsinki, lecture 2 (1965)Google Scholar
  2. Arrow, K.J.: Essays in the Theory of Risk-Bearing. North-Holland Publishing Co., Amsterdam, Third printing (1976)Google Scholar
  3. Atıcı F.M., Uysal F.: A production-inventory model of HMMS on time scales. Appl. Math. Lett. 21, 236–243 (2008)CrossRefGoogle Scholar
  4. Atıcı F.M., Biles D.C., Lebedinsky A.: An application of time scales to economics. Math. Comput. Modell. 43(7–8), 718–726 (2006)Google Scholar
  5. Bekker M., Bohner M., Herega A., Voulov H.: Spectral analysis of a q-difference operator. J. Phys. A 43(14), 15 (2010)CrossRefGoogle Scholar
  6. Bohner M., Martynyuk A.A.: Elements of stability theory of A. M. Liapunov for dynamic equations on time scales. Prikl. Mekh. 43(9), 3–27 (2007) in RussianGoogle Scholar
  7. Bohner M., Peterson A.: Dynamic equations on time scales: an introduction with applications. Birkhäuser, Boston (2001)Google Scholar
  8. Bohner M., Peterson A.: Advances in dynamic equations on time scales. Birkhäuser, Boston (2003)CrossRefGoogle Scholar
  9. Bohner M., Ünal M.: Kneser’s theorem in q-calculus. J. Phys. A Math. Gen. 38(30), 6729–6739 (2005)CrossRefGoogle Scholar
  10. Bohner M., Warth H.: The Beverton–Holt dynamic equation. Appl. Anal. 86(8), 1007–1015 (2007)CrossRefGoogle Scholar
  11. Bohner M., Fan M., Zhang J.: Periodicity of scalar dynamic equations on time scales and applications to population models. J. Math. Anal. Appl. 330(1), 1–9 (2007)CrossRefGoogle Scholar
  12. Diamond H., Gelles G.M.: On an asymptotic property of expected utility. Econ. Lett. 47(3–4), 305–309 (1995)CrossRefGoogle Scholar
  13. Diamond H., Gelles G.M.: Gaussian approximation of expected utility. Econ. Lett. 64(3), 301–307 (1999)CrossRefGoogle Scholar
  14. Gelles G.M., Mitchell D.W.: Broadly decreasing risk aversion. Manag. Sci. 45(10), 1432–1439 (1999)CrossRefGoogle Scholar
  15. Gollier C.: The economics of risk and time. The MIT press, Cambridge (2001)Google Scholar
  16. Gollier C., Pratt J.W.: Risk vulnerability and the tempering effect of background risk. Econometrica 64(5), 1109–1123 (1996)CrossRefGoogle Scholar
  17. Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD thesis, Universität Würzburg (1988)Google Scholar
  18. Hilger S.: Analysis on measure chains—a unified approach to continuous and discrete calculus. Results Math. 18, 18–56 (1990)Google Scholar
  19. Kihlstrom R.E., Romer D., Williams S.: Risk aversion with random initial wealth. Econometrica 49(4), 911–920 (1981)CrossRefGoogle Scholar
  20. Kimball M.S.: Precautionary saving in the small and in the large. Econometrica 58(1), 53–73 (1990)CrossRefGoogle Scholar
  21. Kimball M.S.: Standard risk aversion. Econometrica 61(3), 589–611 (1993)CrossRefGoogle Scholar
  22. Kloeden, P.E., Zmorzynska, A.: Lyapunov functions for linear nonautonomous dynamical equations on time scales. Adv. Differ. Equ., Article ID 69106, pp. 10 (2006)Google Scholar
  23. Machina M.J.: Decision making in the presence of risk. Science 236(4801), 537–543 (1987)CrossRefGoogle Scholar
  24. Machina M.J., Neilson W.S.: The Ross characterization of risk aversion: strengthening and extension. Econometrica 55(5), 1139–1149 (1987)CrossRefGoogle Scholar
  25. Maggi M.A., Magnani U., Menegatti M.: On the relationship between absolute prudence and absolute risk aversion. Decis. Econ. Finance 29(2), 155–160 (2006)CrossRefGoogle Scholar
  26. Pratt J.W.: Risk aversion in the small and in the large. Econometrica 32(1–2), 122–136 (1964)CrossRefGoogle Scholar
  27. Pratt J.W., Zeckhauser R.J.: Proper risk aversion. Econometrica 55(1), 143–154 (1987)CrossRefGoogle Scholar
  28. Sheng Q.: A view of dynamic derivatives on time scales from approximations. J. Differ. Equ. Appl. 11(1), 63–81 (2005)CrossRefGoogle Scholar
  29. Tisdell C.C., Zaidi A.: Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic modelling. Nonlinear Anal. 68(11), 3504–3524 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Economics, RollaMissouri University of Science and TechnologyMissouriUSA

Personalised recommendations