Poiesis & Praxis

, Volume 6, Issue 1–2, pp 93–108

Modularity in philosophy, the neurosciences, and psychiatry

Focus

Abstract

The neurosciences are generating new findings regarding genetic and neurobiological aspects of the pathophysiology of mental disorders. Especially, certain genetic risk factors like neuregulin-1 seem to predispose individuals to a psychotic phenotype beyond the limits of traditional classificatory boundaries between organic psychoses in Alzheimer’s disease, bipolar affective disorder and schizophrenia. Little, however, is known about how such genetic risk factors actually confer an increased risk for psychosis in an individual patient. A gap between neuroscientific findings and psychopathological phenomena exists. The main hypothesis how this gap may be bridged is that mental disorders arise as a consequence of dysfunctions of normal mental functions. Modularity may provide a useful conceptual framework in that temporally and/or spatially stable neural circuits subserve certain physiological functions of the human brain, which become the target of pathophysiological effectors. The idea of a modular construction of the human brain is based on neurobiological evidence regarding the columnar architecture of the cerebral cortex, which provides certain elementary analytical functions. Modular dysfunctions may be assessed with methods of experimental psychopathology, in which subsystems of brain functions are tested with standardized experimental psychological techniques (functional psychopathology). The main questions here are how to define a module, and whether the classical neuroscientific definitions can be used to characterize higher integrative functions of the human brain.

Zusammenfassung

Die Neurowissenschaften generieren neue Ergebnisse hinsichtlich der Genetik und Neurobiologie psychischer Störungen. Einige Risikofaktoren wie Veränderungen im Neuregulin-1-Gen scheinen beispielsweise eher für einen psychotischen Phänotyp zu prädisponieren, der die klassischen Grenzen von Alzheimer-Erkrankung, der bipolaren affektiven Störung und der Schizophrenie überschreitet. Wenig ist allerdings über die pathophysiologischen Mechanismen in individuellen Patienten bekannt, über die solche genetischen Risikofaktoren das Psychose-Risiko erhöhen. Eine Lücke existiert zwischen den neurowissenschaftlichen Befunden und den psychopathologischen Manifestationen. Eine Hypothese zur Überbrückung dieser Lücke ist die Vorstellung, dass psychische Störungen die Folge einer Dysfunktion physiologischer Gehirnfunktionen sind. Modulariät ist ein nützliches konzeptuelles Rahmenwerk, in dem zeitlich oder räumlich stabile neuronale Schaltkreise, die bestimmte physiologische Funktionen erfüllen, das Ziel pathophysiologischer Effektor-Faktoren werden. Die Vorstellung eines modularen Aufbaus der Gehirnfunktionen basiert auf neurobiologischen Befunden zur kolumnalen Architektur des Kortex, die gewisse elementare analytische Funktionen sicherstellt. Störungen von Modulfunktionen können mittels Methoden der experimentellen Psychopathologie erfasst warden, bei der Subsysteme der Gehirnfunktion mit standardisierten experimentellen psychologischen Techniken überprüft werdern (funktionelle Psychopathologie). Die Hauptfragen sind wie Module definiert werden, und ob klassische neurowissenschaftliche Definitionen geeignet sind, um höhere integrative Hirnfunktionen zu charakterisieren.

Résumé

Les neurosciences génèrent de nouvelles découvertes en ce qui concerne les aspects génétiques et neurobiologiques de la pathophysiologie des désordres mentaux. Ainsi, il existe certains facteurs de risque génétiques comme la neuréguline-1 qui semble prédisposer les individus à un phénotype psychotique allant au-delà des frontières que la classification traditionnelle a établi entre les psychoses organiques de la maladie d’Alzheimer, le désordre affectif bipolaire et la schizophrénie. Cependant, les connaissances sur la manière dont ces de facteurs de risque augmentent les chances de développer une psychose chez le patient sont très minces. Il y a un décalage entre les découvertes neuroscientifiques et les phénomènes psychopathologiques. L’hypothèse principalement avancée pour réduire ce décalage propose que les troubles mentaux surgissent conséquemment à un disfonctionnement des fonctions cérébrales normales. La modularité pourrait fournir un cadre conceptuel utile puisque les circuits neuraux ayant une stabilité temporelle et/ou spatiale, favorisent les fonctions physiologiques du cerveau humain devenant la cible d’effecteurs pathophysiologiques. La conception d’une construction modulaire du cerveau humain est basée sur l’observation de l’architecture cylindrique du cortex cérébral qui permet les fonctions analytiques élémentaires. Les dysfonctions modulaires peuvent être étudiées par des méthodes de psychopathologie expérimentale au cours desquelles les sous-systèmes des fonctions du cerveau sont analysés grâce à des techniques psychologiques expérimentales standardisées (psychopathologie fonctionnelle). Les principales interrogations se portent sur la définition d’un module et sur la pertinence des définitions neuroscientifiques classiques pour caractériser les fonctions intégratives supérieures du cerveau humain.

References

  1. Anderson ML (2007) The massive redeployment hypothesis and the functional topography of the brain. Philos Psychol 20:143–174 10.1080/09515080701197163CrossRefGoogle Scholar
  2. Atran S (2001) The case for modularity: sin or salvation? Evol Cogn 7:1–10Google Scholar
  3. Barrett HC, Kurzban R (2006) Modularity in cognition: framing the debate. Psychol Rev 113:628–647 10.1037/0033-295X.113.3.628CrossRefGoogle Scholar
  4. Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore E (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci USA 103:19518–19523 10.1073/pnas.0606005103CrossRefGoogle Scholar
  5. Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K, Neufeld RW, Théberger J, Schaefer B, Williamson P (2007) Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr Bull 33:1004–1012 10.1093/schbul/sbm052CrossRefGoogle Scholar
  6. Borowsky R, Esopenko C, Cummine J, Sarty GE (2007) Neural representations of visual words and objects: a functional MRI study on the modularity of reading and object processing. Brain Topogr 20:89–96 10.1007/s10548-007-0034-1CrossRefGoogle Scholar
  7. Breakspear M (2006) The nonlinear theory of schizophrenia. Austr NZ J Psychiatr 40:20–35 10.1111/j.1440-1614.2006.01737.xCrossRefGoogle Scholar
  8. Butterfill S (2007) What are modules and what is their role in development? Mind Lang 4:450–473CrossRefGoogle Scholar
  9. Cabeza R, Nyberg L (2000) Neural bases of learning and memory: functional neuroimaging evidence. Curr Opin Neurol 13:415–421 10.1097/00019052-200008000-00008CrossRefGoogle Scholar
  10. Calabretta R, Parisi D (2005) Evolutionary connectionism and mind/brain modularity. In: Callebaut W, Rasskin-Gutmann D (eds) Modularity. Understanding the development and evolution of natural complex systems. MIT Press, Cambridge, pp 309–330Google Scholar
  11. Casanova MF (2003) Modular concepts of brain organization and the neuropathology of psychiatric conditions. Psychiatr Res 118:101–102 10.1016/S0165-1781(03)00061-1CrossRefGoogle Scholar
  12. Casanova MF (2006) Neuropathological and genetic findings in autism: the significance of a putative minicolumnopathy. Neuroscientist 12:435–441 10.1177/1073858406290375CrossRefGoogle Scholar
  13. Casanova MF (2007) Schizophrenia seen as a deficit in the modulation of cortical minicolumns by monoaminergic systems. Int Rev Psychiatry 19:361–372 10.1080/09540260701486738CrossRefGoogle Scholar
  14. Chomsky N (1984) Modular approaches to the study of the mind. San Diego State University Press, San DiegoGoogle Scholar
  15. Cleghorn JM, Albert ML (1990) Modular disjunction in schizophrenia: a framework for a pathological psychophysiology. In: Kales A, Stefanis CN, Talbot J (eds) Recent advances in schizophrenia. Springer, BerlinGoogle Scholar
  16. Coltheart M (1999) Modularity and cognition. Trends Cogn Sci 3:115–120 10.1016/S1364-6613(99)01289-9CrossRefGoogle Scholar
  17. Corlett PR, Murray GK, Honey GD, Aitken MRF, Shanks DR, Robbins TW, Bullmore ET, Dickinson A, Fletcher PC (2007) Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions. Brain 130:2387–2400 10.1093/brain/awm173CrossRefGoogle Scholar
  18. Cosmides L, Tooby J (1999) Toward an evolutionary taxonomy of treatable conditions. J Abnormal Psychol 108:453–464 10.1037/0021-843X.108.3.453CrossRefGoogle Scholar
  19. Dailey MN, Cottrell GW (1999) Organization of face and object recognition in modular neural network models. Neural Netw 12:1053–1073 10.1016/S0893-6080(99)00050-7CrossRefGoogle Scholar
  20. David A (2003) Ten books. Br J Psychiatr 183:263–265 10.1192/bjp.183.3.265CrossRefGoogle Scholar
  21. Duchaine B, Cosmides L, Tooby J (2001) Evolutionary psychology and the brain. Curr Opin Neurobiol 11:225–230 10.1016/S0959-4388(00)00201-4CrossRefGoogle Scholar
  22. Erdi P, Kiss T (2001) The complexity of the brain: structural, functional, and dynamic modules. In: Wermter S, Austin J, Willshaw D (eds) Emergent neural computational architectures based on neuroscience. Towards neuroscience-inspired computing. Springer, Berlin, pp 203–211CrossRefGoogle Scholar
  23. Felleman DJ, Xiao Y, McClendon E (1997) Modular organization of occipito-temporal pathways: Cortical connections between visual area 4 and visual area 2 and posterior inferotemporal ventral area in macaque monkeys. J Neurosci 17:3185–3200Google Scholar
  24. Fodor J (1983) The modularity of mind. MIT Press, CambridgeGoogle Scholar
  25. Freeman D (2007) Suspicious minds. The psychology of persecutory delusions. Clin Psychol Rev 27:425–457 10.1016/j.cpr.2006.10.004CrossRefGoogle Scholar
  26. Frégnac Y, Blatow M, Changeux JP, DeFelipe J, Lansner A, Maass W, McCormick DA, Michel CM, Monyer H, Szathmary E, Yuste R (2006) Group report: neocortical microcircuits. UPs and DOWNs in cortical computation. In: Grillner S, Graybiel AM (eds) Microcircuits. The interface between neurons and global brain function. MIT Press, Cambridge, pp 393–433Google Scholar
  27. Furmark T, Tillfors M, Marteinsdottir I, Fischer H, Pissiota A, Langström B, Fredrikson M (2002) Common changes in cerebral blood flow in patients with social phobia treated with citalopram or cognitive-behavioral therapy. Arch Gen Psychiatr 59:425–433 10.1001/archpsyc.59.5.425CrossRefGoogle Scholar
  28. Gaebel W, Wölwer W, Zielasek J (2006) Von der deskriptiven zur funktionalen Psychiatrie. Auf dem Weg zu einer modularen Psychiatrie. Die Psychiatrie 4:221–232Google Scholar
  29. Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD (2007) Aberrant "default mode" functional connectivity in schizophrenia. Am J Psychiatr 164:450–457 10.1176/appi.ajp.164.3.450CrossRefGoogle Scholar
  30. Geary DC, Huffman KJ (2002) Brain and cognitive evolution: forms of modularity and functions of mind. Psychol Bull 128:667–698 10.1037/0033-2909.128.5.667CrossRefGoogle Scholar
  31. Gentner R, Classen J (2006) Modular organization of finger movements by the human central nervous system. Neuron 52:731–742 10.1016/j.neuron.2006.09.038CrossRefGoogle Scholar
  32. Go RC, Perry RT, Wiener H, Bassett SS, Blacker D, Devlin B, Sweet RA (2005) Neuregulin-1 polymorphisms in late onset Alzheimer’s disease families with psychoses. Am J Med Genet B Neuropsychiatr Genet 139:28–32CrossRefGoogle Scholar
  33. Green EK, Raybould R, MacGregor S, Gordon-Smith K, Heron J, Hyde S, Grozeva D, Hamshere M, Williams N, Owen MJ, O’Donovan MC, Jones L, Jones I, Kirov G, Craddock N (2005) Operation of the schizophrenia susceptibility gene, neuregulin 1, across traditional diagnostic boundaries to increase risk for bipolar disorder. Arch Gen Psychiatry 62:642–648 10.1001/archpsyc.62.6.642CrossRefGoogle Scholar
  34. Hoff P (1988) Nosologische Grundpostulate bei Kraepelin. Z Klin Psychopathol Psychother 36:328–336Google Scholar
  35. Hoffmann S, Tittgemeyer M, von Cramon DY (2007) Cognitive impairment in multiple sclerosis. Curr Opin Neurol 20:275–280 10.1097/WCO.0b013e32810c8e87CrossRefGoogle Scholar
  36. Jablensky A (2004) Resolving schizophrenia's CATCH22. Nat Genet 7:674–675Google Scholar
  37. Jones H, Delespaul P, Van Os J (2003) Jaspers was right after all—delusions are distinct from normal beliefs. Br J Psychiatr 103:285–286 10.1192/bjp.183.4.285CrossRefGoogle Scholar
  38. Karmiloff-Smith A (1992) Beyond modularity. A developmental perspective on cognitive science. MIT Press, CambridgeGoogle Scholar
  39. Kraepelin E (1920) Die Erscheinungsformen des Irreseins. Zeitschrift für die gesamte Neurologie und Psychiatrie 62:1–29 10.1007/BF02887354CrossRefGoogle Scholar
  40. Leise EM (1990) Modular construction of nervous systems: a basic principle of design for invertebrates and vertebrates. Brain Res Rev 15:1–23 10.1016/0165-0173(90)90009-DCrossRefGoogle Scholar
  41. Levy Y (1996) Modularity of language reconsidered. Brain Lang 55:240–263 10.1006/brln.1996.0103CrossRefGoogle Scholar
  42. Lloyd D (2008) Through a glass darkly: schizophrenia and functional brain imaging. Philos Psychiatry Psychol (in press) (manuscript online accessible at http://www.trincoll.edu/~dlloyd/sz%20and%20functional%20brain%20imaging.html, January 2008)
  43. Löw A, Rockstroh B, Elbert T, Silberman Y, Bentin S (2007) Disordered semantic representation in schizophrenic temporal cortex revealed by neuromagnetic response patterns. BMC Psychiatry 6:23 10.1186/1471-244X-6-23CrossRefGoogle Scholar
  44. Magen H, Cohen A (2007) Modularity beyond perception: evidence from single task interference paradigms. Cognit Psychol 55:1–36 10.1016/j.cogpsych.2006.09.003CrossRefGoogle Scholar
  45. Mainero C, Pantano P, Caramia F, Pozzilli C (2006) Brain reorganization during attention and memory tasks in multiple sclerosis: insights from functional MRI studies. J Neurol Sci 245:93–98 10.1016/j.jns.2005.08.024CrossRefGoogle Scholar
  46. Marr D (1982) Vision. Freeman Publishers, New YorkGoogle Scholar
  47. Meyer-Lindenberg A, Weinberger DR (2006) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 7:818–827 10.1038/nrn1993CrossRefGoogle Scholar
  48. Meyer-Lindenberg A, Mervis CB, Berman KF (2006) Neural mechanisms in Williams syndrome: a unique window to genetic influences on cognition and behaviour. Nat Rev Neurosci 7:380–393 10.1038/nrn1906CrossRefGoogle Scholar
  49. Morton JB, Munakata Y (2005) What's the difference? Contrasting modular and neural network approaches to understanding developmental variability. J Dev Behav Pediatr 26(2):128–139Google Scholar
  50. Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722 10.1093/brain/120.4.701CrossRefGoogle Scholar
  51. Murphy D, Stich S (2000) Darwin in the madhouse: evolutionary psychology and the classification of mental disorders. In: Carruthers P, Chamberlain A (eds) Evolution and the human mind. Modularity, language and meta-cognition. Cambridge University Press, Cambridge, pp 62–92CrossRefGoogle Scholar
  52. Nakamura H, Gattass R, Desimone R, Ungerleider LG (1993) The modular organization of projections from areas V1 and V2 to areas V4 and TEO in Macaques. J Neurosci 13:3681–3691Google Scholar
  53. Nakamura H, Le WR, Wakita M, Mikami A, Itoh K (2004) Projections from the cytochrome oxidase modules of visual area V2 to the ventral posterior area in the macaque. Exp Brain Res 155:102–111 10.1007/s00221-003-1698-8CrossRefGoogle Scholar
  54. Owen MJ, Craddock N, Jablensky A (2007) The genetic deconstruction of psychosis. Schizophr Bull 33:905–911 10.1093/schbul/sbm053CrossRefGoogle Scholar
  55. Panksepp J, Panksepp J (2000) The seven sins of evolutionary psychology. Evol Cogn 6:108–131Google Scholar
  56. Paterson SJ, Brown JH, Gsödl MK, Johnson MH, Karmiloff-Smith A (1999) Cognitive modularity and genetic disorders. Science 286:2355–2358 10.1126/science.286.5448.2355CrossRefGoogle Scholar
  57. Pernet C, Schyns PG, Demonet JF (2007) Specific, selective or preferential: comments on category specificity in neuroimaging. Neuroimage 15:991–997 10.1016/j.neuroimage.2007.01.017CrossRefGoogle Scholar
  58. Philipson L (2002) Functional modules of the brain. J Theor Biol 215:109–119 10.1006/jtbi.2001.2501CrossRefGoogle Scholar
  59. Pinker S (1999) How the mind works. Penguin Books, LondonCrossRefGoogle Scholar
  60. Popper KR, Eccles JC (1977) The self and its brain. Routledge, LondonCrossRefGoogle Scholar
  61. Prinz JJ (2006) Is the mind really modular? In: Stainton R (ed) Contemporary debates in cognitive science. Blackwell, Oxford, pp 22–36Google Scholar
  62. Redies C, Puelles L (2001) Modularity in vertebrate brain development and evolution. Bioessays 23:1100–1111 10.1002/bies.10014CrossRefGoogle Scholar
  63. Roudi Y, Latham PE (2007) A balanced memory network. PLoS Comput Biol 3:e141. doi:10.1371/journal.pcbi.0030141 10.1371/journal.pcbi.0030141CrossRefGoogle Scholar
  64. Sanai N, Mirzadeh Z, Berger MS (2008) Functional outcome after language mapping for glioma resection. N Engl J Med 358:18–27 10.1056/NEJMoa067819CrossRefGoogle Scholar
  65. Seitz RJ, Nickel J, Azari NP (2006) Functional modularity of the medial prefrontal cortex: involvement in human empathy. Neuropsychology 20:743–751 10.1037/0894-4105.20.6.743CrossRefGoogle Scholar
  66. Silver H, Feldman P, Bilker W, Gur RC (2003) Working memory deficit as a core neuropsychological dysfunction in schizophrenia. Am J Psychiatr 160:1809–1816 10.1176/appi.ajp.160.10.1809CrossRefGoogle Scholar
  67. Sporns O, Honey CJ (2006) Small worlds inside big brains. Proc Natl Acad Sci USA 103:19219–19222 10.1073/pnas.0609523103CrossRefGoogle Scholar
  68. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundssson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71:877–892 10.1086/342734CrossRefGoogle Scholar
  69. Sun P, Ueno K, Waggoner RA, Gardner JL, Tanaka K, Cheng K (2007) A temporal frequency-dependent functional architecture in human V1 revealed by high-resolution fMRI. Nat Neurosci. doi:10.10.38/nn1983
  70. Szentagothai J (1975) The “module-concept” in cerebral cortical architecture. Brain Res 95:475–495 10.1016/0006-8993(75)90122-5CrossRefGoogle Scholar
  71. Uttal WR (2001) The new phrenology. The limits of localizing cognitive processes in the brain. MIT Press, CambridgeGoogle Scholar
  72. Wakefield JC (2007) The concept of mental disorder: diagnostic implications of the harmful dysfunction analysis. World Psychiatr 6:149–156Google Scholar
  73. Ward CD (1990) Neuropsychiatry and the modularity of mind. J Neuropsychiatr Clin Neurosci 2:443–449Google Scholar
  74. Wölwer W, Frommann N, Halfmann S, Piaszek A, Streit M, Gaebel W (2005) Remediation of impairments in facial affect recognition in schizophrenia: efficacy and specificity of a new training program. Schizophr Res 80:295–303 10.1016/j.schres.2005.07.018CrossRefGoogle Scholar
  75. Woolsey TA, Rovainen CM, Cox SB, Henegar MH, Liang GE, Liu D, Moskalenko MH, Sui J, Wie L (1996) Neuronal units linked to microvascular modules in cerebral cortex: response elements for imaging the brain. Cereb Cortex 6:647–660 10.1093/cercor/6.5.647CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Psychiatry and PsychotherapyHeinrich-Heine-University, Rhineland State Clinics DüsseldorfDüsseldorfGermany

Personalised recommendations