Poiesis & Praxis

, Volume 4, Issue 2, pp 95–109 | Cite as

Neuro-technical interfaces to the central nervous system

Focus

Abstract

Neuro-technical interfaces are technical devices that bridge the electronic world to neurons with the objective to establish a long term stable contact for bidirectional information exchange. What does that mean in detail and to what kind of machine and for what purpose should the central nervous system, i.e. the brain, be connected? Science fiction literature and movies offer a tremendous variety of usually uncomfortable scenarios including cyborg and robocop super-humans and mass control. Do these implants change the psyche in general and what is feasible in nowadays therapeutic and rehabilitative approaches? In this overview, the author will not answer these questions but tries to deliver an overview of the technological background, the opportunities and the limitations of neuro-technical interfaces to the central nervous system. The fundamental specifications for neuro-technical interfaces will be introduced. Different degrees of implant invasiveness will be discussed and lead to a summary of clinical systems with their application-specific complexity. Actual technological opportunities and limitations will be addressed as well as general physical limitations. Current and future scenarios of neuro-technical interfaces to the central nervous system will be presented from an engineering point of view arising some questions that might be of interest with respect to ethical and societal implications when those interfaces are transferred into clinical practice and public applications.

Zusammenfassung

Neurotechnische Schnittstellen sind technische Geräte zur Überbrückung der Lücke zwischen der Welt der Elektronik und der der Neuronen, mit dem Ziel, langfristig stabilen Kontakt zum Informationsaustausch in beiden Richtungen herzustellen. Was bedeutet das im Detail und an welche Art von Maschine und zu welchem Zweck sollte das zentrale Nervensystem, d.h. das Gehirn, angeschlossen werden? Science-Fiction-Geschichten und -Filme führen uns eine ungeheure Vielfalt an gewöhnlich unangenehmen Szenarien vor, darunter Cyborg- und Robocop-Übermenschen und die Kontrolle der Massen. Ändern derartige Implantate die Psyche allgemein? Was ist überhaupt möglich im Rahmen der heutigen Therapie- und Rehabilitationsansätze? Diese Fragen wird der Autor in diesem Beitrag nicht beantworten, er wird jedoch versuchen, einen Überblick zu liefern über die technischen Hintergründe, Möglichkeiten und Grenzen neurotechnischer Schnittstellungen zum zentralen Nervensystem. Die grundlegenden Spezifikationen für neurotechnische Schnittstellen werden vorgestellt. Verschiedene Grade der Invasivität von Implantaten werden diskutiert, mündend in einer zusammenfassenden Darstellung klinischer Systeme mit ihrer anwendungsspezifischen Komplexität. Tatsächliche technische Möglichkeiten und Grenzen werden angesprochen, ebenso wie allgemeine physikalische Randbedingungen. Gegenwärtige und zukünftige Szenarien für neurotechnische Schnittstellen zum zentralen Nervensystem werden aus der Perspektive des Ingenieurs dargestellt und Fragen angesprochen, die hinsichtlich ethischer und gesellschaftlicher Implikationen von Interesse sein könnten, wenn solche Schnittstellen einmal in die klinische Praxis und öffentliche Anwendung übergehen.

Résumé

Les interfaces neurotechniques sont des dispositifs techniques qui jettent un pont entre l’univers électronique et les neurones, dans le but d’établir un contact stable à long terme pour l’échange bidirectionnel d’information. Qu’est-ce que cela signifie dans le détail et à quel type de dispositif technique le système nerveux central, p. ex. le cerveau, doit-il être connecté, et dans quel but ? La littérature de science-fiction et le cinéma proposent une incroyable palette de scénarios en général peu agréables, comprenant des surhommes tels que le cyborg Robocop et le contrôle des masses. De tels implants modifient-ils le psychisme en général, et qu’est-ce qui est faisable dans les approches thérapeutiques et rééducatives actuelles? Dans cette vue d’ensemble, l’auteur ne répond pas à ces questions mais tente de donner un aperçu du contexte technologique, des possibilités et des limites des interfaces neurotechniques avec le système nerveux central. Les spécifications fondamentales des interfaces neurotechniques sont présentées. Les différents degrés d’invasivité des implants sont discutés et débouchent sur une présentation synoptique des systèmes cliniques avec la complexité spécifique aux applications. Les possibilités et les limites effectives de la technique sont abordées, tout comme les restrictions générales imposées par la physique. Les scénarios actuels et futurs relatifs aux interfaces neurotechniques avec le système nerveux central sont présentés du point de vue d’ingénieur, donnant lieu à des questions pouvant être intéressantes en termes d’implications éthiques et sociales, si ces interfaces devaient être utilisées un jour dans la pratique hospitalière et les applications pour le grand public.

References

  1. Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol (Lond) 196(2):479–493CrossRefGoogle Scholar
  2. Burmeister JJ, Moxon K, Gerhardt GA (2000) Ceramic-based multisite microelectrodes for electrochemical recordings. Anal Chem 72(1):187–192CrossRefGoogle Scholar
  3. Campbell PK, Jones KE, Huber RJ, Horch KW, Normann RA (1991) A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Biomed Eng 38(8):758–768CrossRefGoogle Scholar
  4. Dhillon GS, Horch KW (2005) Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng 13(4):468–72CrossRefGoogle Scholar
  5. Dobelle WH (2000) Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J:46–49Google Scholar
  6. Fernandez E, Pelayo F, Romero S, Bongard M, Marin C, Slfaro A Merabet L (2005) Development of a cortical neuroprosthesis for the blind: the relevance of neuroplasticity. J Neural Eng 2:R1–R12CrossRefGoogle Scholar
  7. Haemmerle H, Kobuch K, Kohler K, Nisch W, Sachs H, Stelzle M (2002) Biostability of micro-photodiode arrays for subretinal implantation, Biomat 23:797–804CrossRefGoogle Scholar
  8. Jacob R, Kruger J (1991) Manufacture of sharpened microelectrodes from varnished wire. J Neurosci Methods 38(1):89–92CrossRefGoogle Scholar
  9. Johansson RS, Wetling G (1990) Tactile afferent signals in the control of precision grip. In: Jeannerod M (ed) Attention and performance, vol XIII. Erlbaum, NJGoogle Scholar
  10. Mehring C, Nawrot MP, de Oliveira SC, Vaadia E, Schulze-Bonhage A, Aertsen A, Ball T (2004) Comparing information about arm movement direction in single channels of local and epicortical field potentials from monkey and human motor cortex. J Physiol Paris 98(4–6):498–506CrossRefGoogle Scholar
  11. Metz S, Holzer R, Renaud P (2001) Fabrication of flexible, implantable microelectrodes with embedded fluidic microchannels. Transducers 01 eurosensors XV: the 11th international conference on solid state sensors and actuators, pp 1210–1213Google Scholar
  12. Moore SK, Mahurin M., Christie B (2006) Psychiatries shocking new tools. IEEE Spectr 43(3):18–25CrossRefGoogle Scholar
  13. Murphy JV, Patil A (2003) Stimulation of the nervous system for the management of seizures: current and future developments. CNS Drugs 17(2):101–115CrossRefGoogle Scholar
  14. Nordmann A (2004) Converging technologies—shaping the future of European societies, European CommunitiesGoogle Scholar
  15. Pfurtscheller G, Muller GR, Pfurtscheller J, Gerner HJ, Rupp R (2003) ‘Thought’—control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett 351(1):33–36CrossRefGoogle Scholar
  16. Pine J, Maher M, Potter S, Tai Y-C, Tatic-Lucic S, Wright J, Buzsaki G, Bragin A (1996) A cultured neuron probe. In: Proceedings of the 18th annual international conference of the IEEE Engineering in Medicine and Biology Society, IEEE part vol 5, New York, pp 2133–2135Google Scholar
  17. Rocco MC, Bainbridge WS (eds) (2002) Converging technologies for improving human performance. NSF/DOC-report, ArlingtonGoogle Scholar
  18. Rodriguez-Oroz MC, Zamarbide I, Guridi J, Palmero MR, Obeso JA (2004) Efficacy of deep brain stimulation of the subthalamic nucleus in Parkinson’s disease 4 years after surgery: double blind and open label evaluation. J Neurol Neurosurg Psychiatry 75(10):1382–1385CrossRefGoogle Scholar
  19. Rousche PJ, Pellinen DS, Pivin DP Jr, et al (2001) Flexible polyimide-based intracorticalrecording arrays with bioactive capability. IEEE Trans Biomed Eng 48:361–371CrossRefGoogle Scholar
  20. Santiesteban FMM, Swanson SD, Noll DC, Anderson DJ (2006) Magnetic resonance compatibility of multichannel silicon microelectrode systems for neural recording and stimulation: design criteria, tests, and recommendations. IEEE Trans Biomed Eng 53(3):547–558CrossRefGoogle Scholar
  21. Serruya MD, Caplan AH, Saleh M, Morris DS, Donoghue JP (2004) The braingate pilot trial: building and testing a novel direct neural output for patients with severe motor impairment. In: Abstract presented at the society for neuroscience, San DiegoGoogle Scholar
  22. Stieglitz T, Gross M (2002) Flexible BIOMEMS with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems. Sens Actuat B Chem B 83:8–14CrossRefGoogle Scholar
  23. Stieglitz T, Meyer J-U (2006a) Neural implants in clinical practice. In: Urban GA (eds) BIOMEMS, Springer, Dordrecht, pp 41–70CrossRefGoogle Scholar
  24. Stieglitz T, Meyer J-U (2006b) “Biomedical Microdevices for Neural Implants”. In: Urban GA (eds) BIOMEMS. Springer, Dordrecht, pp 71–138CrossRefGoogle Scholar
  25. Takahashi H, Ejiri T, Nakao M, Nakamura N, Kaga K, Herve T (2003) Microelectrode array on folding polyimide ribbon for epidural mapping of functional evoked potentials. IEEE Trans Biomed Eng 50(4):510–516CrossRefGoogle Scholar
  26. Takeuchi S, Suzuki T, Mabuchi K, Fujita H (2004) 3D flexible multichannel neural probe array. J Micromech Microeng 14:104–107CrossRefGoogle Scholar
  27. Troyk P, Bak M, Berg J, Bradley D, Cogan S, Erickson R, Kufta C, McCreery D, Schmidt E, Towle V (2003) A model for intracortical visual prosthesis research. Artif Organs 27(11):1005–1015CrossRefGoogle Scholar
  28. Veraart C, Duret F, Brelén M, Oozeer M, Delbeke J (2004) Vision rehabilitation in the case of blindness. Expert Rev Med Dev 1:139–153CrossRefGoogle Scholar
  29. Walter P, Kisvárday ZF, Görtz M, Alteheld N, Rössler G, Stieglitz T, Eysel UT (2005) Cortical activation with a completely implanted wireless retinal prosthesis. Invest Ophthal Vis Sci 46:1780–1785CrossRefGoogle Scholar
  30. Wise KD, Anderson DJ, Hetke JF, Kipke DR, Najafi K (2004) Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc IEEE 92:76–97CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Laboratory for Biomedical Microtechnology, Department of Microsystems EngineeringIMTEK—University of FreiburgFreiburgGermany

Personalised recommendations