Poiesis & Praxis

, Volume 3, Issue 1–2, pp 62–72

The species concept for prokaryotic microorganisms—An obstacle for describing diversity?

Focus

Abstract

Species are the basis of the taxonomic scheme. They are the lowest taxonomic category that are used as units for describing biodiversity and evolution. In this contribution we discuss the current species concept for prokaryotes. Such organisms are considered to represent the widest diversity among living organisms. Species is currently circumscribed as follows: A prokaryotic species is a category that circumscribes a (preferably) genomically coherent group of individual isolates/strains sharing a high degree of similarity in (many) independent features, comparatively tested under highly standardized conditions. Although the number of described prokaryotic species is underrepresented in the living world, this phylo-phenetic or polythetic species concept currently in use is considered to be pragmatic, operational and universally applicable and successfully used for identification processes.

Zusammenfassung

Die Arten bilden die Grundlage des taxonomischen Modells. Sie sind die unterste taxonomische Kategorie und dienen als Einheit zur Beschreibung von Biodiversität und Evolution. In diesem Beitrag diskutieren wir den gegenwärtigen Artbegriff am Beispiel der Prokaryonten, also der Organismen, die als die am weitesten diversifizierten Lebewesen gelten. Der Begriff „Art“ wird derzeit wie folgt umschrieben: Eine Prokaryontenart ist eine Kategorie, die eine (vorzugsweise) genomisch kohärente Gruppe individueller Isolate/Stämme beschreibt, die in Vergleichstests unter hoch standardisierten Bedingungen einen hohen Grad von Ähnlichkeit hinsichtlich (vieler) voneinander unabhängiger Merkmale zeigen. Obwohl die Anzahl der beschriebenen Prokaryontenarten in der Welt des Lebenden unterrepräsentiert ist, gilt dieser phylophenetische oder polythetische Artbegriff, der heute benutzt wird, als pragmatisch, brauchbar, allgemeingültig und erfolgreich in seiner Anwendung in Identifikationsverfahren.

Résumé

Les espèces constituent la base du modèle taxinomique. Elles sont la catégorie taxinomique la plus basse et servent d’unités pour la description de la biodiversité et de l’évolution. Dans notre article, nous étudions le concept courant d’espèce en prenant l’exemple des procaryotes, qui sont considérés comme présentant la plus grande diversité parmi les organismes vivants. La notion d’espèce est actuellement délimitée comme suit : une espèce procaryote est une catégorie comprenant un groupe d’individus/de variétés (de préférence) cohérent du point de vue génomique et présentant un degré élevé de similarités pour de (nombreuses) caractéristiques indépendantes les unes des autres. Bien que le nombre d’espèces procaryotes décrites soit sous-représenté dans le monde vivant, ce concept phylo-phénétique ou polythétique d’espèce en usage aujourd’hui, est considéré comme pragmatique, opérationnel, universellement applicable et utilisé avec succès dans les procédés d’identification.

References

  1. Boucher Y, Nesbo CL, Doolitle WF (2001) Microbial genomes: dealing with diversity. Curr Opin Microbiol 4:285–289CrossRefGoogle Scholar
  2. Buchanan RE, John-Brooks RS, Breed RS (1948) International bacteriological code of nomenclature. J Bacteriol 55:287–306Google Scholar
  3. Cohan FM (2002) What are bacterial species? Annu Rev Microbiol 56:457–487CrossRefGoogle Scholar
  4. Colwell RR, Clayton RA, Ortiz-Conde BA, Jacobs D, Russek-Cohen E (1995) The microbial species concept and biodiversity. In: Allsopp D, Colwell RR, Hawksworth DL (eds) Microbial diversity and ecosystems function. CAB International, Oxon, pp 3–15Google Scholar
  5. Cowan ST (1965) Principles and practice of bacterial taxonomy—a forward look. J Gen Microbiol 39:48–159CrossRefGoogle Scholar
  6. Dykhuizen DE (1998) Santa Rosalia revisited: why are there so many species of bacteria? Ant van Leeuwen 73:25–33CrossRefGoogle Scholar
  7. Euzéby JP (1997) List of bacterial names with standing in nomenclature. Société de Bactériologie Systématique et Vétérinaire. http://www.bacterio.cict.fr/. Cited 2003Google Scholar
  8. Goodfellow M, Minnikin DE (eds) (1985) Chemical methods in bacterial systematics. Academic, LondonGoogle Scholar
  9. Goodfellow M, Jones D, Priest FG (eds) (1985) Computer-assisted bacterial systematics. Academic, LondonGoogle Scholar
  10. Goodfellow M, Manfio GP, Chun J (1997) Towards a practical species concept for cultivable bacteria. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: the units of biodiversity. Chapman & Hall, London, pp 25–60Google Scholar
  11. Grimont PAD (1988) Use of DNA reassociation in bacterial classification. Can J Microbiol 34:541–546CrossRefGoogle Scholar
  12. Hey J (2001a) Genes, categories and species. Oxford University Press, New YorkGoogle Scholar
  13. Hey J (2001b) The mind of the species problem. Trends Ecol Evol 16:326–329CrossRefGoogle Scholar
  14. Hughes JB, Hellmann JJ, Rickets TH, Bohannan BJM (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Env Microbiol 67:4399–4406CrossRefGoogle Scholar
  15. Hull DL (1997) The ideal species concept-and why we can’t get it. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: the units of biodiversity. Chapman & Hall, London, pp 357–380Google Scholar
  16. Lan R, Reeves PR (2000) Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends Microbiol 8:396–401CrossRefGoogle Scholar
  17. Lengeler JW, Drews G, Schlegel HG (eds) (1999) Biology of prokaryotes. Thieme, StuttgartGoogle Scholar
  18. Ludwig W, Schleifer KH (1994) Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol Rev 15:155–173CrossRefGoogle Scholar
  19. Madigan MT, Martinko JM, Parker J (eds) (2001) Mikrobiologie, Spektrum Akademischer, HeidelbergGoogle Scholar
  20. Mallet M (1995) A species definition for the modern synthesis. Trends Ecol Evol 10:294–299CrossRefGoogle Scholar
  21. Mayden RL (1997) A hierarchy of species concepts: the denouement in the saga of the species problem. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: the units of biodiversity. Chapman & Hall, London, pp 381–324Google Scholar
  22. Mühlhardt C (2003) Der Experimentator: Molekularbiologie/Genomics. Spektrum Akademischer, HeidelbergGoogle Scholar
  23. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304CrossRefGoogle Scholar
  24. Rosselló-Mora (2003) Opinion: the species problem, can we achieve a universal concept? Syst Appl Microbiol 26:323–326CrossRefGoogle Scholar
  25. Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67CrossRefGoogle Scholar
  26. Rosselló-Mora R, Kämpfer P (2004) Defining microbial diversity—the species concept for prokaryotic and eukaryotic microorganisms. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington DC, pp 29–39CrossRefGoogle Scholar
  27. Sneath PHA (1983) Distortions of taxonomic structure from incomplete data on a restricted set of reference strains. J Gen Microbiol 129:1045–1073Google Scholar
  28. Sneath PHA (1992) International code of nomenclature of bacteria. American Society for Microbiology. Washington DCGoogle Scholar
  29. Sneath PHA (1993) Evidence fromAeromonasfor genetic crossing-over in ribosomal sequences. Int J Syst Bacteriol 43:626–629CrossRefGoogle Scholar
  30. Sneath PHA, Sokal RR (1973) Numerical taxonomy. W.H. Freeman, San FranciscoGoogle Scholar
  31. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  32. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kämpfer P, Maiden MCJ, Nesme X, Rosselló-Mora R, Swings J, Trüper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047Google Scholar
  33. Stahl DA (1996) Molecular approaches for the measurement of density, diversity and phylogeny. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. ASM Press, Washington DC, pp 102–114Google Scholar
  34. Strätz M, Mau M, Timmis KN (1996) System to study horizontal gene exchange among microorganisms without cultivation of recipients. Mol Microbiol 22:207–215CrossRefGoogle Scholar
  35. Trüper HG (1999) How to name a prokaryote? Etymological considerations, proposals and practical advice in prokaryote nomenclature. FEMS Microbiol Rev 23:231–249Google Scholar
  36. Ursing JB, Rosselló-Mora RA, García-Valdés E, Lalucat J (1995) Taxonomic note: a pragmatic approach to the nomenclature of phenotypically similar genomic groups. Int J Syst Bacteriol 45:604CrossRefGoogle Scholar
  37. Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438Google Scholar
  38. Van Niel CB, Allen MB (1952) A note on Pseudomonas stutzeri. J Bacteriol 64:413–422Google Scholar
  39. Van Regenmortel MHV (1997) Viral species. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: the units of biodiversity. Chapman and Hall, London, pp 17–24Google Scholar
  40. Ward DM (1998) A natural species concept for prokaryotes. Curr Opin Microbiol 1:271–277CrossRefGoogle Scholar
  41. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  42. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583CrossRefGoogle Scholar
  43. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271Google Scholar
  44. Yap WH, Zhang Z, Wang Y (1999) Distinct types of rRNA operons exist in the genome of the actinomyceteThermomonospora chromogenaand evidence for horizontal gene transfer of an entire rRNA operon. J Bacteriol 181:5210–5209Google Scholar
  45. Young JM (2001) Implications of alternative classifications and horizontal gene transfer for bacterial taxonomy. Int J Syst Evol Microbiol 51:945–953CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Institut für Angewandte MikrobiologieJustus-Liebig Universität GiessenGiessenGermany
  2. 2.Grup d’Oceanografia InterdisciplinarInstitut Mediterrani d’Estudis Avançats (CSIC-UIB)EsporlesSpain

Personalised recommendations