Poiesis & Praxis

, Volume 2, Issue 4, pp 285–295 | Cite as

Vanishing senses—restoration of sensory functions by electronic implants

Focus

Abstract

Is the endeavour to restore perceptive brain functions by electronic implants the first step on the way to create bionic cyborgs? Can we augment or multiply our senses by directly contacting computer chips to the brain? Will bio-implants influence and permanently change human psyche?

Almost 50 years ago, the foundation of the new field of neuroprosthetics propelled research aimed at devising a seamless connection between the human nervous system and microelectronic implants.

The complexity of sensory perception often renders the task of assessing efficacy and side effects of a sensory implant impossible when computer simulation and animal experimentation alone are employed. Historical development in this field has shown that some of the evaluation has to be done in investigations performed directly in the human.

The consequences of such a technology will not be confined to medicine alone. This paper describes its development, state of the art, limiting factors, and future possibilities. It offers an introduction into the elementary prerequisites of neural interfacing as a basis for argumentation in the upcoming public debate.

The advancement of sensory implants for the restitution or augmentation of impaired brain function requires a moral and ethical position not only of the scientist involved, but of all the society, similar to the fields of psychopharmacology and stem cell research.

Résumé

Les efforts visant à restaurer des fonctions sensorielles du cerveau au moyen d’implants électroniques sont-ils le premier pas vers la créations de cyborgs bioniques ? Pouvons-nous amplifier ou multiplier nos sens en contactant directement des puces électroniques au cerveau ? Les bio-implants vont-ils influencer et modifier durablement le psychisme humain ?

Voici près de 50 ans, le nouveau domaine de la neuroprothétique a lancé la recherche sur la possibilité d’établir des connexions directes entre le système nerveux humain et des implants microélectroniques.

La complexité de la perception sensorielle rend souvent impossible d’évaluer l’efficacité et les effets secondaires d’un implant sensoriel au moyen de la simulation sur ordinateur ou des expériences sur les animaux. Les évolutions dans ce domaine ont montré que certaines études ne sont possibles que par des essais effectués directement sur l’homme.

Les conséquences d’une telle technologie ne se limiteront pas à long terme au domaine de la médecine. Le présent article décrit les développements de cette technologie, son niveau actuel, ses limites et ses possibilités futures. Il donne un aperçu des conditions neuroscientifiques élémentaires requises, comme base d’argumentation à un débat public prochain.

L’évolution des implants sensoriels pour restaurer ou augmenter des fonctions du cerveau ayant été endommagées exige une prise de position morale et éthique, non seulement de la part des scientifiques impliqués, mais de l’ensemble de la société, comme dans les domaines des substances psychopharmacologiques et de la recherche sur les cellules souches humaines.

Zusammenfassung

Sind die Bemühungen zur Wiederherstellung verlorener Sinnesfunktionen mit Hilfe elektronischer Implantate der erste Schritt auf dem Weg zum bionischen Cyborg? Können wir unsere Sinne durch direkte Verbindungen zwischen Computerchips und Gehirn verstärken oder vervielfältigen? Werden Bioimplantate die menschliche Psyche beeinflussen und nachhaltig verändern?

Mit der Neuroprothetik hat vor fast 50 Jahren eine technologische Entwicklung begonnen, die eine nahtlose Verbindung zwischen dem menschlichen Nervensystem und mikroelektronischen Implantaten anstrebt.

Sinneseindrücke sind oft so komplex, dass es kaum möglich ist, Wirkungen und Nebenwirkungen eines sensorischen Implantates allein in Computersimulationen oder Tierversuchen zu testen. Die historische Entwicklung auf diesem Gebiet hat bereits gezeigt, dass einige Schritte der Erprobung nur in Untersuchungen direkt am Menschen möglich sind.

Die Folgen einer solchen Technologie werden langfristig nicht auf das Gebiet der Medizin beschränkt bleiben.

Der vorliegende Artikel beschreibt ihre Entwicklung, ihren derzeitigen Stand, ihre Beschränkungen und ihre zukünftigen Möglichkeiten. Er gibt einen Einblick in die elementaren neurowissenschaftlichen Voraussetzungen auf diesem Gebiet für eine sichere Argumentation in der absehbaren öffentlichen Diskussion.

Die Entwicklung sensorischer Implantate zum Ersatz oder zur Verstärkung geschädigter Hirnfunktionen erfordert eine ethisch-moralische Positionierung nicht nur der an der Entwicklung beteiligten Wissenschaftler, sondern der gesamten Gesellschaft, ähnlich wie im Bereich der Psychopharmaka und der Stammmzellforschung.

References

  1. Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol 196:479–493CrossRefGoogle Scholar
  2. Cauwels JM (1986) The body shop: Bionic revolutions in medicine. The C.V. Mosby Company, St. Louis, MOGoogle Scholar
  3. Chow AY, Chow VY (1997) Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 225:13–16CrossRefGoogle Scholar
  4. Chow AY, Pardue MT, Chow VY, Peyman GA, Liang C, Perlman JI, Peachey NS (2001) Implantation of silicon chip microphotodiode arrays into the cat subretinal space. IEEE Trans Neural Syst Rehabil Eng 9:86–95CrossRefGoogle Scholar
  5. Clark GM, Tong YC, Martin LF (1981) A multiple channel cochlear implant: An evaluation using open-set CID sentences. Laryngoscope 91:628–634CrossRefGoogle Scholar
  6. Djourno A, Eyries C (1957) Prothèse auditive par excitation électrique à distance du nerf sensoriel à l’aide d’un bobinage inclus à demeure. Presse Méd 35:1417–1423Google Scholar
  7. Dobelle WH, Mladejovsky MG (1974) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol 243:553–576CrossRefGoogle Scholar
  8. Dobelle WH (2000) Artificial vision for the blind by connecting a television camera to the visual cortex. Asaio J 46:3–9CrossRefGoogle Scholar
  9. Doyle JH, Doyle JB, Turnbull FMJ (1964) Electrical stimulation of the eighth cranial nerve. Arch Otolaryngol 80:388–391CrossRefGoogle Scholar
  10. Eckmiller R (1997) Learning retina implants with epiretinal contacts. Ophthalmic Res 29:281–289CrossRefGoogle Scholar
  11. Edgerton BJ, House WF, Hitselberger W (1982) Hearing by cochlear nucleus stimulation in humans. Ann Otol Rhinol Laryngol Suppl 91:117–124Google Scholar
  12. Grumet AE, Wyatt JL, Jr., Rizzo JF, 3rd (2000) Multi-electrode stimulation and recording in the isolated retina. J Neurosci Methods 101:31–42CrossRefGoogle Scholar
  13. House WF, Urban J (1973) Long term results of electrode implantation and electronic stimulation of the cochlea in man. Ann Otol Rhinol Laryngol 82:504–517CrossRefGoogle Scholar
  14. Humayun MS, de Juan E, Jr., Dagnelie G, Greenberg RJ, Propst RH, Phillips DH (1996) Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 114:40–46CrossRefGoogle Scholar
  15. Humayun MS (2001) Intraocular retinal prosthesis. Trans Am Ophthalmol Soc 99:271–300Google Scholar
  16. McCreery DB, Yuen TGH, Bullara LA (2000) Chronic microstimulation in the feline ventral cochlear nucleus: Physiologic and histologic effects. Hear Res 149:223–238Google Scholar
  17. Michelson RP (1971) The results of electrical stimulation of the cochlea in human sensory deafness. Ann Otol Rhinol Laryngol 80:914–919CrossRefGoogle Scholar
  18. Michelson RP, Schindler RA (1981) Multichanel cochlear implant: Preliminary results in man. Laryngoscope 91:38–42Google Scholar
  19. Normann RA, Warren DJ, Ammermuller J, Fernandez E, Guillory S (2001) High-resolution spatio–temporal mapping of visual pathways using multi-electrode arrays. Vision Res 41:1261–1275CrossRefGoogle Scholar
  20. Otto SR, Brackmann DE, Staller S, Menapace CM (1997) The multichannel auditory brainstem implant: 6-month coinvestigator results. Adv Otorhinolaryngol 52:1–7Google Scholar
  21. Otto SR, Brackmann DE, Hitselberger WE, Shannon RV, Kuchta J (2002) Multichannel auditory brainstem implant: Update on performance in 61 patients. J Neurosurg 96:1063–1071CrossRefGoogle Scholar
  22. Pfingst BE (2001) Auditory prothesis. In: Chapin JK, Moxon KA (eds) Neural prothesis for restoration of sensory and motor function. CRC Press, London, pp 3–45Google Scholar
  23. Rauschecker JP, Shannon RV (2002) Sending sound to the brain. Sci 295:1025–1029Google Scholar
  24. Rizzo JF, 3rd, Wyatt J, Humayun M, de Juan E, Liu W, Chow A, Eckmiller R, Zrenner E, Yagi T, Abrams G (2001) Retinal prosthesis: An encouraging first decade with major challenges ahead. Ophthalmology 108:13–14CrossRefGoogle Scholar
  25. Rosahl SK, Mark G, Herzog M, Pantazis C, Gharabaghi F, Matthies C, Brinker T, Samii M (2001) Far-field responses to stimulation of the cochlear nucleus with microsurgically placed penetrating and surface electrodes in the cat. J Neurosurg 95:845–852CrossRefGoogle Scholar
  26. Schindler RA (1999) Personal reflections on cochlear implants. Ann Otol Rhinol Laryngol Suppl 177:4–7Google Scholar
  27. Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O’Rourke DK, Vallabhanath P (1996) Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119(2):507–522CrossRefGoogle Scholar
  28. Shannon RV (1989) Threshold functions for electrical stimulation of the human cochlear nucleus. Hear Res 40:173–177CrossRefGoogle Scholar
  29. Shannon RV, Otto SR (1990) Psychophysical measures from electrical stimulation of the human cochlear nucleus. Hear Res 47:159–168CrossRefGoogle Scholar
  30. Simmons FB (1966) Electrical stimulation of the auditory nerve in man. Arch Otolaryngol 84:2–54CrossRefGoogle Scholar
  31. Steven SS, Jones RC (1939) The mechanisms of hearing by electrical stimulation. J Acoust Soc Am 10:261–269CrossRefGoogle Scholar
  32. Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, Vanlierde A, Parrini S, Wanet-Defalque MC (1998) Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 813:181–186CrossRefGoogle Scholar
  33. Wever EG, Bray CW (1930) The nature of the acoustic response: The relation between sound frequency and frequency of impulses in the auditory nerve. J Exp Psychol 13:373–387CrossRefGoogle Scholar
  34. Zrenner E (2002) Will retinal implants restore vision? Sci 295:1022–1025CrossRefGoogle Scholar
  35. Zrenner E, Miliczek KD, Gabel VP, Graf HG, Guenther E, Haemmerle H, Hoefflinger B, Kohler K, Nisch W, Schubert M, Stett A, Weiss S (1997) The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res 29:269–280CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Neurocenter, Department of NeurosurgeryAlbert-Ludwigs-UniversityFreiburgGermany

Personalised recommendations