Skip to main content
Log in

Optical water types found in Brazilian waters

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

Optical water types (OWTs) can represent diverse ranges of Chlorophyll-a (Chl-a), total suspended matter (TSM), and colored dissolved organic matter (CDOM) concentrations, which make them extremely useful for monitoring water quality, for example, detecting eutrophic conditions or tuning remote sensing algorithms. In this study, the objective is to assess OWTs found in Brazilian waters using in situ remote sensing reflectance (Rrs), acquired for water bodies encompassing a wide range of optical characteristics. Eight OWTs are obtained based on Rrs spectral shape and magnitude, which represent different limnological characteristics of Brazilian waters. The OWT 1 is clear waters with low TSM, Chl-a, and CDOM (median (\(\tilde{x}\)): TSM of 2.64 g m−3, Chl-a of 6.04 mg m−3, and CDOM of 0.6 m−1); OWT 2 represents moderate turbid waters (TSM \(\tilde{x}\): 5.14); OWTs 3, 4, and 5 are characterized by waters with high Chl-a concentration (\(\tilde{x}\): 33.1, 39.6, and 180.4 mg m−3, respectively); OWT 6 is characterized with the highest CDOM concentration (\(\tilde{x}\): 4.07 m−1); OWTs 7 and 8 consist of waters with the highest TSM concentrations from terrestrial input (\(\tilde{x}\): 19.55 and 93.25, respectively). Hence, those OWTs could support satellite monitoring by helping to tune algorithms and also providing wide spatial–temporal monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alves TP, Mafra LL (2018) Diel variations in cell abundance and trophic transfer of diarrheic toxins during a massive dinophysis bloom in Southern Brazil. Toxins (Basel). https://doi.org/10.3390/toxins10060232

    Article  Google Scholar 

  • Arthur D, Vassilvitskii S (2007) k-means++: the advantages of careful seeding. In: Proceedings of the eighteenth annual ACM-SIAM Symposium on discrete algorithms, SODA. New Orleans, p 11

  • Augusto-Silva PB, Ogashawara I, Barbosa CCF et al (2014) Analysis of MERIS reflectance algorithms for estimating chlorophyll-a concentration in a Brazilian reservoir. Remote Sens 6:11689–11707. https://doi.org/10.3390/rs61211689

    Article  Google Scholar 

  • Barbosa C, Ferreira R, Araujo C, Novo E (2014) Bio-optical characterization of two Brazilian hydroelectric reservoirs as support to understand the carbon budget in hydroelectric reservoirs. Int Geosci Remote Sens Symp. https://doi.org/10.1109/IGARSS.2014.6946570

    Article  Google Scholar 

  • Barbosa C, Lee Z, De Carvalho LS, Novo E (2016) Effect of stratified water column on chlorophyll estimate by remote sensing algorithms in a highly eutrophic hydroelectric reservoir. Ocean Opt 2016:9

    Google Scholar 

  • Barbosa CCF (2007) Sensoriamento Remoto da Dinâmica da Circulação da Água Do Sistema Planície de Curuai/Rio Amazonas. In: Instituto Nacional de Pesquisas Espaciais (INPE)

  • Cairo C, Barbosa C, Lobo F et al (2020) Hybrid chlorophyll-a algorithm for assessing trophic states of a tropical Brazilian reservoir based on MSI/Sentinel-2 data. Remote Sens 12:40

    Article  Google Scholar 

  • Cairo CT, Barbosa CCF, de Moraes Novo EML, do Carmo Calijuri M (2016) Spatial and seasonal variation in diffuse attenuation coefficients of downward irradiance at Ibitinga Reservoir, São Paulo, Brazil. Hydrobiologia 784:265–282. https://doi.org/10.1007/s10750-016-2883-7

    Article  CAS  Google Scholar 

  • Curtarelli VP, da Silva EFF, Lobo F de L et al (2019) Water transparency in a Brazilian reservoir. In: Anais do XIX Simpósio Brasileiro de Sensoriamento Remoto

  • da Silva EFF, Luz LFG da, Barbosa CCF, Noernberg MA (2019) Turbidity distribution in a subtropical estuary: the estuarine complex of Paranaguá. In: Anais do XIX Simpósio Brasileiro de Sensoriamento Remoto, pp 2354–2357

  • de Toledo CE, de Araújo JC, de Almeida CL (2014) The use of remote-sensing techniques to monitor dense reservoir networks in the Brazilian semiarid region. Int J Remote Sens 35:3683–3699. https://doi.org/10.1080/01431161.2014.915593

    Article  Google Scholar 

  • Eleveld MA, Ruescas AB, Hommersom A et al (2017) An optical classification tool for global lake waters. Remote Sens. https://doi.org/10.3390/rs9050420

    Article  Google Scholar 

  • Ferreira RMP (2014) Caracterização da Ótica e do Carbono Orgânico Dissolvido no Reservatório de Três Marias/Mg. In: INPE

  • Fraley C (1998) How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J 41:578–588. https://doi.org/10.1093/comjnl/41.8.578

    Article  Google Scholar 

  • Galvao LS, Pereira Filho W, Abdon MM et al (2003) Spectral reflectance characterization of shallow lakes from the Brazilian Pantanal wetlands with field and airborne hyperspectral data. Int J Remote Sens 24:4093–4112. https://doi.org/10.1080/0143116031000070382

    Article  Google Scholar 

  • Holland A, Stauber J, Wood CM et al (2018) Dissolved organic matter signatures vary between naturally acidic, circumneutral and groundwater-fed freshwaters in Australia. Water Res 137:184–192. https://doi.org/10.1016/j.watres.2018.02.043

    Article  CAS  PubMed  Google Scholar 

  • Hommersom A, Kratzer S, Laanen M et al (2012) Intercomparison in the field between the new WISP-3 and other radiometers (TriOS Ramses, ASD FieldSpec, and TACCS). J Appl Remote Sens 6:063615. https://doi.org/10.1117/1.jrs.6.063615

    Article  Google Scholar 

  • Johnsen G, Sakshaug E (2007) Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulseamplitude-modulated and fast-repetition-rate fluorometry. J Phycol 43:1236–1251. https://doi.org/10.1111/j.1529-8817.2007.00422.x

    Article  CAS  Google Scholar 

  • Jorge DSF, Barbosa CCF, de Carvalho LAS et al (2017) SNR (signal-to-noise ratio) impact on water constituent retrieval from simulated images of optically complex Amazon lakes. Remote Sens 9:1–18. https://doi.org/10.3390/rs9070644

    Article  Google Scholar 

  • Kirk JTO (1992) Monte Carlo modeling of the performance of a reflective tube absorption meter. Appl Opt 31:6463. https://doi.org/10.1364/ao.31.006463

    Article  CAS  PubMed  Google Scholar 

  • Kirk JTO (2011) Light and photosynthesis in aquatic ecosystems, 3rd edn. Cambridge Uiversity Press, Cambridge

    Google Scholar 

  • Le C, Li Y, Zha Y et al (2011) Remote estimation of chlorophyll a in optically complex waters based on optical classification. Remote Sens Environ 115:725–737. https://doi.org/10.1016/j.rse.2010.10.014

    Article  Google Scholar 

  • Lobo FL, Costa MPF, Novo EMLM (2015) Time-series analysis of Landsat-MSS/TM/OLI images over Amazonian waters impacted by gold mining activities. Remote Sens Environ 157:170–184. https://doi.org/10.1016/j.rse.2014.04.030

    Article  Google Scholar 

  • Londe LR de (2008) Comportamento Espectral do Fitoplâncton de um Reservatório Brasileiro Eutrofizado—Ibitinga (SP). In: INPE

  • Maciel D, Novo E, de Carvalho LS et al (2019) Retrieving total and inorganic suspended sediments in Amazon floodplain lakes: a multisensor approach. Remote Sens 11:1744. https://doi.org/10.3390/rs11151744

    Article  Google Scholar 

  • Maciel DA (2019) Avaliação de modelos empíricos e semi-analíticos para a quantificação do total de sólidos inorgânicos em lagos da planície do baixo Amazonas. In: Instituto Nacional de Pesquisas Espaciais (INPE)

  • MacQUEEN (1967) Some methods for classification and analysis of multivariate observations. In: Fifth Berkeley Symposium, pp 281–297

  • Matthews MW (2017) Bio-optical Modeling of Phytoplankton Chlorophyll-a. In: Mishra DR, Ogashawara I, Gitelson AA (eds) Bio-optical modeling and remote sensing of inland waters. Candice Janco, Amsterdam, pp 157–188

    Chapter  Google Scholar 

  • Miller RL, Belz M, Del Castillo C, Trzaska R (2002) Determining CDOM absorption spectra in diverse coastal environments using a multiple pathlengh, liquid core waveguide system. Cont Shelf Res 22:1301–1310

    Article  Google Scholar 

  • Mobley CD (1999) Estimation of the remote-sensing reflectance from above-surface measurements. Appl Opt 38:7442–7455. https://doi.org/10.1364/AO.38.007442

    Article  CAS  PubMed  Google Scholar 

  • Moore TS, Dowell MD, Bradt S, Ruiz Verdu A (2014) An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters. Remote Sens Environ 143:97–111. https://doi.org/10.1016/j.rse.2013.11.021

    Article  PubMed  PubMed Central  Google Scholar 

  • Morel A, Bricaud A (1981) Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Res 28A:1375–1393

    Article  Google Scholar 

  • Noernberg MA, Luz L, da Silva EFF, Mafra LL (2017) Remote sensing reflectance variability along an intense HAB event in Southern Brazil. In: 2017 international ocean colour science meeting (IOCS-2017), Lisbon

  • Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825–2830. https://doi.org/10.1145/2786984.2786995

    Article  Google Scholar 

  • Ramsay AJO, Wickham H, Graves S (2018) fda: Functional data analysis. Springer, Berlin

    Google Scholar 

  • Ramsay JO (2006) Functional data analysis. Wiley Online Library, Hoboken

    Google Scholar 

  • Rodrigues T, Ivánová I, Alcântara E et al (2015) Analysis of data quality element’s applicability for radiometric measurements in remote sensing of water: a case study in Nova Avanhandava reservoir, São Paulo, Brazil. Rev Bras Cartogr 2015:1327–1339

    Google Scholar 

  • Roesler CS, Boss ES (2008) In situ measurement of the inherent optial properties (IOPs) and potential for harmful algal bloom (HAB) detection and coastal ecosystem observations. In: Real-time coastal observing systems for marine ecosystem dynamics and harmful algal blooms: theory, instrumentation and modelling, pp 153–206

  • Rotta LH, Mishra DR, Alcântara E et al (2019) Kd(PAR) and a depth based model to estimate the height of submerged aquatic vegetation in an oligotrophic reservoir: a case study at Nova Avanhandava. Remote Sens 11:1–21. https://doi.org/10.3390/rs11030317

    Article  Google Scholar 

  • Rotta LHS, Mishra DR, Alcântara EH, Imai NN (2016) Analyzing the status of submerged aquatic vegetation using novel optical parameters. Int J Remote Sens 37:3786–3810. https://doi.org/10.1080/01431161.2016.1204027

    Article  Google Scholar 

  • Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  Google Scholar 

  • Shi K, Li Y, Li L et al (2013) Remote chlorophyll-a estimates for inland waters based on a cluster-based classification. Sci Total Environ 444:1–15. https://doi.org/10.1016/j.scitotenv.2012.11.058

    Article  CAS  PubMed  Google Scholar 

  • Sioli H (1968) Hydrochemistry and geology in the Brazilian Amazon region. Amaz Limnol Oecologia Reg Syst Fluminis Amaz 1:267–277

    Google Scholar 

  • Sioli H (1951) Alguns resultados e problemas da limnologia amazônica. Bol Técnico 1951:3–44

    Google Scholar 

  • Sobrinho BF, Luz L, Fernandes LF, Mafra L (2018) Evidence of Noctiluca scintillans grazing during a bloom of toxic Dinophysis acuminata complex, south Brazil. In: The 18th international conference on harmful algae. Nantes

  • Spyrakos E, O’Donnell R, Hunter PD et al (2018) Optical types of inland and coastal waters. Limnol Oceanogr 63:846–870. https://doi.org/10.1002/lno.10674

    Article  Google Scholar 

  • Sun D, Li Y, Wang Q et al (2010) Partitioning particulate scattering and absorption into contributions of phytoplankton and non-algal particles in winter in Lake Taihu (China). Hydrobiologia 644:337–349. https://doi.org/10.1007/s10750-010-0198-7

    Article  CAS  Google Scholar 

  • Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser B Stat Methodol 63:411–423

    Article  Google Scholar 

  • Uudeberg K, Ansko I, Getter P, Ansper A (2019) Using optical water types to monitor changes in optically complex inland and coastal waters. Remote Sens. https://doi.org/10.3390/rs11192297

    Article  Google Scholar 

  • Vantrepotte V, Loisel H, Dessailly D, Mériaux X (2012) Optical classification of contrasted coastal waters. Remote Sens Environ 123:306–323. https://doi.org/10.1016/j.rse.2012.03.004

    Article  Google Scholar 

  • Wet Labs (2009) Spectral absorption and attenuation meter. In: User’s guide

  • Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 1:80–83. https://doi.org/10.2307/3001946

    Article  Google Scholar 

  • Wünsch UJ, Stedmon CA, Tranvik LJ, Guillemette F (2018) Unraveling the size-dependent optical properties of dissolved organic matter. Limnol Oceanogr 63:588–601. https://doi.org/10.1002/lno.10651

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001; the São Paulo Research Foundation (FAPESP) from projects no. 2014/23903-9, 2013/09045-7, 2012/19821-1, and 2008/56252-0, and the Monitoramento Ambiental por Satélites no Bioma Amazônia—Banco Nacional de Desenvolvimento Econômico e Social (MSA-BNDES) from project no. 1022114003005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Filisbino Freire da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Haw Yen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 kb)

Supplementary file2 (XLSX 232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, E.F.F., Novo, E.M.L.M., Lobo, F.L. et al. Optical water types found in Brazilian waters. Limnology 22, 57–68 (2021). https://doi.org/10.1007/s10201-020-00633-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-020-00633-z

Keyword

Navigation